vp-process nucleosynthesis in neutrino-driven outflows in core-collapse supernovae

Amol V. Patwardhan

(w/ Payel Mukhopadhyay, Alex Friedland, Shuo Xin)

International Conference on Neutrinos and Dark Matter (NuDM-2022)

September 26, 2022

NATIONAL ACCELERATOR LABORATORY Supernovae, neutrinos, and the origin of elements ${\color{black}\bullet}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}{\color{black}\circ}$

p-rich elements, & $\nu p\text{-process}$ 00000000

Effect of hydrodynamics

Outline

2 Proton-rich elements, and u p-process nucleosynthesis

B Hydrodynamics to the rescue . . .

< □ > < 同 > < 回 > < 回 > < 回 >

Supernovae, neutrinos, and the origin of elements $\bigcirc \bullet \bigcirc \bigcirc \bigcirc$

p-rich elements, & νp -process

Effect of hydrodynamics

The origin of the elements

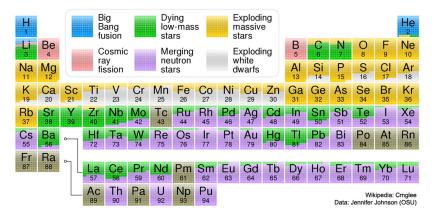


Figure: Astronomy picture of the day (2020 August 9)

NuDM-2022

< /□ > < Ξ

Supernovae, neutrinos, and the origin of elements $\bigcirc \bullet \bigcirc \bigcirc \bigcirc$

p-rich elements, & νp -process

Effect of hydrodynamics

The origin of the elements

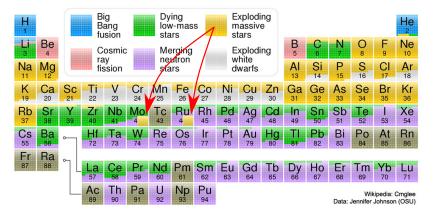


Figure: Astronomy picture of the day (2020 August 9)

< /□ > < Ξ

Supernovae, neutrinos, and the origin of elements $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

Effect of hydrodynamics

Chart of the nuclides

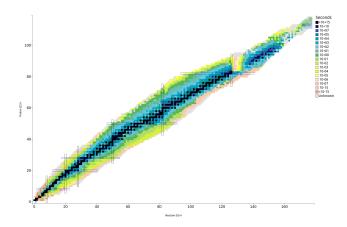


Figure: Chart of Nuclides - National Nuclear Data Center

A (10) < A (10) </p>

NuDM-2022

Supernovae, neutrinos, and the origin of elements $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

p-rich elements, & νp -process

Effect of hydrodynamics

Chart of the nuclides

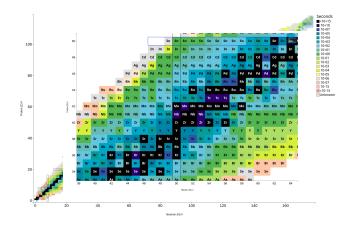


Figure: Chart of Nuclides - National Nuclear Data Center

Supernovae, neutrinos, and the origin of elements $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

p-rich elements, & $\nu p\text{-process}$ 00000000

Core-collapse supernovae and neutrinos

- Stars with $M_{\star}\gtrsim 8\,M_{\odot}$ undergo core collapse when core mass exceeds $\sim 1.4\,M_{\odot}$, i.e., when gravity overcomes electron degeneracy pressure support
- Core bounce at nuclear density sends shockwave through infalling material \rightarrow shock eventually loses energy and stalls before it can blow up the star
- Details of the explosion mechanism unknown, but neutrinos expected to play a major role
- CCSNe are neutrino factories: νs are the main carriers of gravitational binding energy ($\sim 99\%$) and lepton number radiated away from the star

• B.E.
$$\sim 10^{53}$$
 ergs $\implies \sim 10^{58} \nu$ s with $\langle E_{\nu} \rangle \sim 10$ MeV

Supernovae, neutrinos, and the origin of elements $\bigcirc \bigcirc \bigcirc \bigcirc \bullet$

p-rich elements, & $\nu p\text{-process}$ 00000000

Core-collapse supernovae and neutrinos

• Charged-current weak processes govern the energy deposition and n/p ratio, a crucial input for nucleosynthesis

$$\nu_e + n \longleftrightarrow p + e^-$$

 $\bar{\nu}_e + p \longleftrightarrow n + e^+$

- Flavor asymmetric processes: thorough understanding of neutrino flavor evolution therefore required
- Neutrinos depositing $\sim 1\%$ of their energy behind the stalled shock front could revive the shock and explode the star
- ν-induced heating in the aftermath of explosion drives baryonic matter outflows from the surface of the nascent neutron star

p-rich elements, & νp -process

Effect of hydrodynamics

Outline

- 2 Proton-rich elements, and νp -process nucleosynthesis
- 3 Hydrodynamics to the rescue ...

< □ > < 同 > < 回 > < 回 > < 回 >

p-rich elements, & νp -process 00000000

Effect of hydrodynamics

Proton-rich heavy elements in nature

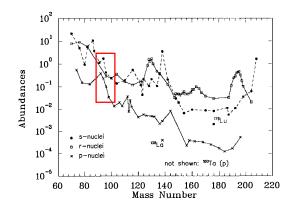


Figure: The solar system abundances of *r*-nuclei, *s*-nuclei, and *p*-nuclei (B. S. Meyer, Annu. Rev. Astron. Astrophys. 1994. 32: 153–190). Most *p*-nuclides have abundances 1–2 orders of magnitude lower than nearby *s*- and *r*-process (neutron-rich) nuclides. Except for 92,94 Mo and 96,98 Ru.

 $p\text{-rich elements}, \& \nu p\text{-process} \\ \text{ootelooooo}$

Effect of hydrodynamics

Synthesis of p-rich nuclides

- Consistent ratio of *p*-rich/*n*-rich abundances suggests that transmutation of previously formed *n*-rich nuclides (e.g., via photodistintegration) could explain *p*-nuclide origin — apart from the anomalously high abundances near the ⁹²Mo peak
 - γ -process [Woosley & Howard (1978)]: photodisintegration of neutron rich isotopes. Occurs during explosive O/Ne shell burning in massive stars, or in exploding white dwarfs (type-la supernovae). Could account for most *p*-nuclides and some ⁹²Mo but not enough ⁹⁴Mo and ^{96,98}Ru
 - ν -process [Woosley *et al.* (1990); Fuller & Meyer (1995)]: transmutation of stable nuclei via neutrino captures in core-collapse supernovae. Outflowing material must remain close to NS for long time to ensure high neutrino fluence
- If transmutation of n-rich nuclides isn't enough to account for 92,94 Mo and 96,98 Ru, then could proton capture be the answer?

p-rich elements, & $\nu p\text{-process}$ 00000000

Proton capture nucleosynthesis

- Heavy-element nucleosynthesis via proton capture requires specific conditions:
 - 1. Prevalence of free protons to capture on seed nuclei, e.g., ${}^{56}Ni$
 - 2. Temperatures high enough to overcome Coulomb barriers, but low enough to be out of nuclear quasi-equilibrium: $1.5\,{\rm GK} < T < 3\,{\rm GK}$
- Suggests that matter outflows from, e.g., core-collapse supernovae, could be candidate sites
- The classic rp-process: rapid proton captures interspersed by β^+ decays, is stalled by β^+ decay "waiting point" nuclei (e.g., ⁶⁴Ge) along the reaction flow, with lifetimes much longer than the outflow dynamical timescales [Wallace & Woosley (1981); Schatz *et al.* (1998)]

p-rich elements, & νp -process

Effect of hydrodynamics

What about 92,94 Mo and 96,98 Ru?

- Transmutation of n-rich nuclides likely cannot explain the anomalously high abundances of ^{92,94}Mo and ^{96,98}Ru
- New mechanism proposed in 2005: the νp -process

PRL 96, 142502 (2006) PHYSICAL REVIEW LETTER	S week ending 14 APRIL 2006
--	--------------------------------

Neutrino-Induced Nucleosynthesis of A > 64 Nuclei: The νp Process

C. Fröhlich,¹ G. Martínez-Pinedo,^{2,3} M. Liebendörfer,^{4,1} F.-K. Thielemann,¹ E. Bravo,⁵ W. R. Hix,⁶ K. Langanke,^{3,7} and N. T. Zinner⁸

¹Departement für Physik und Astronomie, Universität Basel, CH-4056 Basel, Switzerland ²ICREA and Institut d'Estudist Expacials & Catalunya, Universität Autonoma de Barcelona, E-08193 Bellaterra, Spain ³Gesellschaft für Schwerionenforschung, D-64291 Darmstadt, Germany ⁴Canadian Institute for Theoretical Astrophysics. Toronio, Ontario 1855 3H8, Canada ⁵Departement de Fisica i Enginyeria Nuclear. Universitat Politecinica de Catalunya, E-08034 Barcelona, Spain ⁹Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ⁷Institut für Kernphysik, Technische Universität Darmstadt, D-62489 Darmstadt, Germany ⁸Institute for Physics and Astronomy, University of Århus, DK-8000 Århus C, Denmark (Received 10 November 2005; published 10 April 2006)

We present a new nucleosynthesis process that we denote as the νp process, which occurs in supernova (and possibly gamma-ray bursts) when strong neutrino fluxes create proton-rich ejecta. In this process, antineutrino absorptions in the proton-rich environment produce neutrons that are immediately captured by neutron-deficient nuclei. This allows for the nucleosynthesis of nuclei with mass numbers A > 64, making this process a possible candidate to explain the origin of the solar abundances of 92^{20} Mo and 80^{90} Ru. This process also offers a natural explanation for the large abundance of Sr seen in a hyper-metal-poor star.

DOI: 10.1103/PhysRevLett.96.142502

PACS numbers: 26/30.+k, 25.30.Pt, 97.60.Bw =

The νp -process

- Matter outflows in core-collapse supernovae are accompanied by prodigious ν_e and $\bar{\nu}_e$ fluxes, and these outflows can be proton-rich in certain situations
- Seed nuclei up to $^{56}{\rm Ni}$ are formed via freeze-out from nuclear quasi-equilibrium as the outflow cools to $T\sim 3\,{\rm GK}$
- $\bar{\nu}_e$ capture on free protons (in a *p*-rich wind) converts a small fraction (~ few %) of protons into neutrons, triggering (n,p) and (n,γ) reactions to bypass the β^+ decay waiting points. These, combined with (p,γ) , keep the flow moving along the rp chain for $3 \,\mathrm{GK} > T > 1.5 \,\mathrm{GK}$
- At $T \lesssim 1.5\,{\rm GK},$ Coulomb barriers inhibit further (p,γ) reactions, and the νp -process ends

Favourable conditions for νp -process

- Wanajo et al., ApJ 729, 46 (2011)
 - 1. Short time interval (τ_1) for $T > 3 \,\mathrm{GK}$
 - 2. High entropy-per-baryon ($S\gtrsim70$) in the outflow
 - 3. High electron (or proton) fraction ($Y_e > 0.55$)
 - 4. Long time interval (τ_2) in the $3 \,\mathrm{GK} > T > 1.5 \,\mathrm{GK}$ band

(1)–(3) facilitate a high proton-to-seed ratio at the onset of u p

(4) leads to a larger integrated $\bar{\nu}_e$ fluence, furnishing more neutrons to drive the reaction flow towards higher mass numbers

See also: Pruet *et al.*, ApJ 644, 1028 (2006) S. Wanajo, ApJ 647, 1323 (2006)

イロト イポト イヨト イヨト

However . . .

- Several questions raised in the intervening years regarding the $\nu p\text{-}\mathrm{process}$ efficacy
- Among these were reported difficulties in producing the correct isotopic ratios, as well as required absolute yields of ^{92,94}Mo and ^{96,98}Ru [e.g., Fisker *et al.* (2009), Bliss *et al.* (2018)]
- These issues became particularly dire with recent calculations [Jin et al., Nature vol. 588, pg. 57–60 (2020)] reporting heavy suppression of νp-process yields as a result of an in-medium enhancement of the triple-α reaction rate[†]. A nail in the coffin of the νp-process?

[†] **Note:** an enhancement in the $3\alpha \rightarrow {}^{12}C$ reaction rate leads to increased seed-nuclei formation and lowers the proton-to-seed ratio in the outflow, decreasing the νp -process potency

p-rich elements, & νp -process

Effect of hydrodynamics

Elemental mystery

Supernova surprise creates elemental mystery

Michigan State University researchers have discovered that one of the most important reactions in the universe can get a huge and unexpected boost inside exploding stars known as supernovae.

This finding also challenges ideas behind how some of the Earth's heavy elements are made. In particular, it upends a theory explaining the planet's unusually high amounts of some forms, or isotopes, of the elements ruthenium and molyddenum.

Amol V. Patwardhan

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

Effect of hydrodynamics •000000000

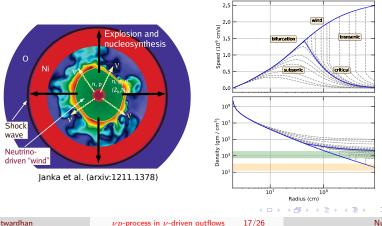
Outline

① Core-collapse supernovae, neutrinos, and the origin of elements

2 Proton-rich elements, and u p-process nucleosynthesis

Output State of the secure ...

< □ > < 同 > < 回 > < 回 > < 回 >


Supernovae, neutrinos, and the origin of elements

p-rich elements, & νp -process

Effect of hydrodynamics 00000000000

Hydrodynamics of neutrino driven outflows

Neutrino driven outflows can expand supersonically or subsonically. In fact, in typical core-collapse supernova environments, they are often near-critical and therefore sensitive to the precise boundary conditions. (A. Friedland and P. Mukhopadhyay, arxiv:2009.10059).

Subsonic outflows (and high entropy) to the rescue

[A. Friedland, P. Mukhopadhyay, AVP, in preparation]

- $\bullet\,$ Subsonic outflows are much more conducive to optimal $\nu p\text{-process yields}$
- Outflow spends more time in the $3\,{\rm GK}>T>1.5\,{\rm GK}$ band where the νp -process operates optimally
- Also, the material remains closer to NS compared to supersonic outflows, allowing for greater exposure to $\bar{\nu}_e$ fluxes which make neutrons needed for (n, p) and (n, γ) reactions
- Triple- α enhancement still hurts the νp -process, but may not kill it completely!
- In addition, a high entropy $S\gtrsim80$ is required to obtain good yields corresponds to $M_{\rm PNS}\sim1.8\,M_\odot$ for $R_{\rm PNS}=19\,{\rm km}$

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

Effect of hydrodynamics

A comparison: subsonic vs supersonic outflows

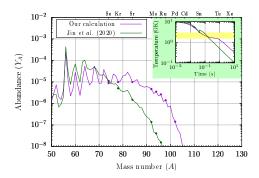
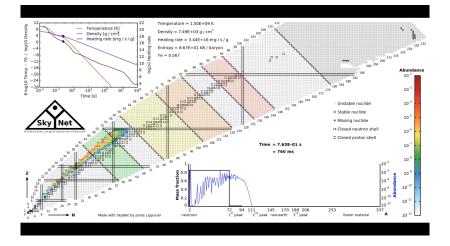


Figure: Nucleosynthesis yields in a νp -process simulation with a subsonic outflow profile (purple) obtained by solving the outflow equations [using a $13 M_{\odot}$ progenitor model, with $M_{\rm PNS} = 1.8 M_{\odot}$ and $R_{\rm PNS} = 19$ km], and with a supersonic outflow profile (green) described in a parametric form with entropy S = 80 by Jin *et al.* (2020). The subsonic outflow shows ~ 2 orders of magnitude higher yields of Mo and Ru.

Amol V. Patwardhan

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$


Nucleosynthesis calculations and inputs

- Nucleosynthesis calculations performed using open source SkyNet code [Lippuner and Roberts, ApJS 233, 18 (2017)]
- Triple- α enhancement was implemented using a code made available publicly by the authors of Jin *et al.* (2020)
- Neutrino luminosity taken to vary with time (exponential decay with $\tau = 3 \text{ s}$) and nucleosynthesis trajectories represented by a sequence of steady-state outflow snapshots for different post-bounce times. Initial Y_e taken to be 0.6
- Self-consistent modelling of outflows using the semi-analytic framework. Post-shock densities for the far boundary condition adopted from simulations described in Sukhbold *et al.*, ApJ 821 38 (2016)

p-rich elements, & $\nu p\text{-process}$ 000000000

Effect of hydrodynamics

A SkyNet calculation

Amol V. Patwardhan

 νp -process in ν -driven outflows 21/26

● Ξ シへの NuDM-2022

・ロト ・四ト ・ヨト ・ヨト

p-rich elements, & $\nu p\text{-process}$ 00000000

Effect of hydrodynamics

Heavy progenitors $(M > 10 M_{\odot})$: subsonic outflows likely

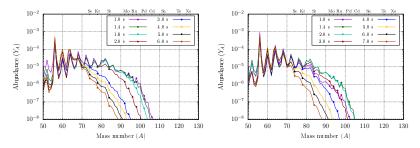


Figure: A sequence of nucleosynthesis yields computed using second-by-second outflow profile snapshots. Left: $13 M_{\odot}$ progenitor outflow profiles. Right: $18 M_{\odot}$ progenitor outflow profiles. In each of these cases, a PNS mass of $1.8 M_{\odot}$ with a radius of 19 km was used in the semi-analytic outflow model.

Optimal yields reached at different times for different progenitor masses, but generally within 1–2 s when the mass outflows are still appreciable. No progenitor fine-tuning needed!

Amol V. Patwardhan

NuDM-2022

 $p\text{-rich elements}, \ \& \ \nu p\text{-process} \\ 000000000$

Effect of hydrodynamics

Integrated yields for the $13 \, M_{\odot}$ progenitor calculation

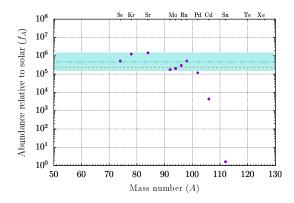


Figure: Integrated yields for the $13 M_{\odot}$ progenitor calculation. The colored band represents a range of f_{max} to $f_{\text{max}}/10$, where f_{max} is the highest production factor among the *p*-nuclides. Red dashed line represents the minimum production factor needed to account for observed solar abundances.

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

Effect of hydrodynamics

$9.5 M_{\odot}$ progenitor: supersonic outflow example

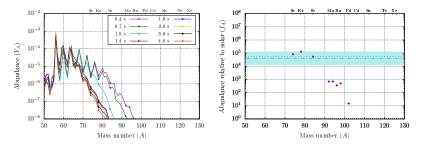


Figure: Nucleosyntheic yields for a $9.5\,M_\odot$ progenitor calculation with $M_{\rm PNS}=1.4\,M_\odot$ and $R_{\rm PNS}=19\,{\rm km}$ (low entropy) and a self-consistently modelled supersonic outflow profile. Left: Yields across steady-state outflow snapshots. Right: Integrated yields.

NuDM-2022

p-rich elements, & νp -process

Effect of hydrodynamics 00000000000

Bonus: neutrino mixing and the νp -process

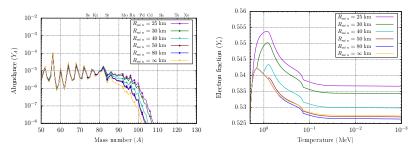


Figure: Nucleosynthesis calculations with different flavor equilibration radii R_{mix} . Left: Abundance vs Mass number. Right: Electron fraction vs Temperature.

[AVP, A. Friedland, P. Mukhopadhyay, and S. Xin, *in preparation*] Using a simple implementation of neutrino flavor mixing, we can demonstrate that flavor mixing close to the proto-neutron star can also provide a boost to the yields of 92,94 Mo and 96,98 Ru

Amol V. Patwardhan

Conclusions

- νp -process appears to be alive and well! (for now at least)
- The hydrodynamics of the outflow are extremely crucial in determining νp -process outcomes
- Subsonic profiles with self-consistently modeled outflow physics can give robust νp -process yields, despite the enhanced triple- α reaction rate
- Neutrino flavor mixing close to the surface of the protoneutron star can also improve *p*-nuclide yields considerably, primarily through an enhancement in the early proton-to-seed ratio

< □ > < □ > < □ > < □ > < □ > < □ >

Bonus slides

p-rich elements, & $\nu p\text{-process}$ 000000000

Effect of hydrodynamics

Amol V. Patwardhan

 νp -process in ν -driven outflows 27

27/26

イロト イヨト イヨト イヨト

NuDM-2022

3

p-rich elements, & νp -process

Effect of hydrodynamics

Semi-analytic outflow model

• Spherically symmetric, steady-state outflow equations [Qian and Woosley, ApJ 471 (1996) 331-351]:

$$\dot{M} = 4\pi r^2 \rho v, \tag{1}$$

$$v\frac{dv}{dr} = -\frac{1}{\rho}\frac{dP}{dr} - \frac{GM}{r^2},$$
(2)

$$\dot{q} = v \left(\frac{d\epsilon}{dr} - \frac{P}{\rho^2} \frac{d\rho}{dr} \right),$$
 (3)

plus corrections due to GR effects, changing g_{\star} , etc.

- \bullet For radiation-dominated ejecta, these can be converted into coupled ODEs for $T,\,S,$ and v
- Integrate using boundary conditions of T and S at the PNS surface, and far pressure at the outer boundary (large radii)

Amol V. Patwardhan

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

Getting the integrated yields

• For a nuclide (A, Z), we define the time-averaged abundance:

$$\langle Y_{A,Z} \rangle = \frac{\int Y_{A,Z}(t_{pb}) \dot{M}(t_{pb}) dt_{pb}}{\int \dot{M}(t_{pb}) dt_{pb}},$$
(4)

- The isotopic "production factor" is defined as $f_{A,Z} = \langle Y_{A,Z} \rangle / Y^{\odot}_{A,Z}$, where $Y^{\odot}_{A,Z}$ is the observed mass fraction of that isotope in the solar system (normalized so that $\sum A Y^{\odot}_{A,Z} = 1$ over all the nuclides)
- The "overproduction factor" is then given by $O_{A,Z} = f_{A,Z} \times (M_{\rm out}/M_{\rm ejec})$, where $M_{\rm out}/M_{\rm ejec} \sim 10^{-4}$. To explain the solar system abundance of a nuclide, one must have $O_{A,Z} \gtrsim 10$, and therefore $f_{A,Z} \gtrsim 10^5$

イロト 不良 トイヨト イヨト

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

Effect of hydrodynamics

PNS mass dependence \implies variability

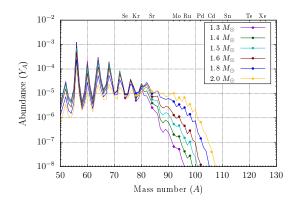


Figure: A comparison of nucleosynthesis yields for self-consistently modeled outflow profiles with different protoneutron star masses, each with radius $R_{\text{PNS}} = 19 \text{ km}$. Heavier PNS \implies deeper gravitational potential \implies higher entropy, which is more favourable for the νp process.

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

Effect of hydrodynamics

PNS radius dependence \implies EoS dependence

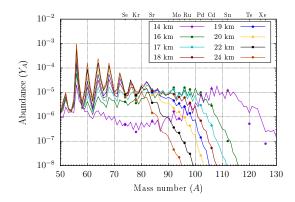


Figure: A comparison of nucleosynthesis yields for self-consistently modeled outflow profiles with different protoneutron star radii, each with mass $M_{\text{PNS}} = 1.8 M_{\odot}$. More compact \implies deeper gravitational potential \implies higher entropy, which is more favourable for the νp process.

Future work

- The variability of yields observed for simulations with different PNS masses offers a bridge to Galactic chemical evolution
- Dependence on PNS radius suggests possible means to get another handle on the nuclear EoS
- The effect of neutrino mixing demonstrated using a simple flavor equilibration model motivates future studies which couple fast-flavor transformations of neutrinos to a nucleosynthesis network.
- Ultimately, all of this must be tested using nucleosynthesis calculations with 3D simulations. This framework provides guidance for such simulations.

< ロト < 同ト < ヨト < ヨト

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

Effect of hydrodynamics

p-rich nucleosynthesis does not happen easily!

- Case in point early universe ($S/n_b \sim 10^{10}$)
 - $T\gtrsim {\rm MeV}$: weak equilibrium

$$\nu_e + n \rightleftharpoons e^- + p$$
$$\bar{\nu}_e + p \rightleftharpoons e^+ + n$$

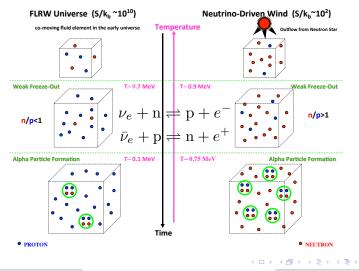
- $T\sim 0.7\,{\rm MeV}$: rate of above reactions falls below expansion rate of the universe \implies weak freeze-out. After that, only free-neutron decay can change n/p ratio
- $T \approx 0.1 \,\text{MeV}$: $Y_p/Y_n \approx 7$. Rate of $n(p,\gamma)d$ (and subsequent reactions which make ³He, ³H, ⁴He) falls below expansion rate. Freeze-out from nuclear statistical equilibrium (NSE) leads to α -particle formation + a sea of protons
- Coulomb barriers inhibit proton capture at $T < 0.1 \text{ MeV} \implies$ in our boring *p*-rich universe, only α -particles are made (and traces of ²H, ³He, ⁷Li)

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

Effect of hydrodynamics

p-rich nucleosynthesis does not happen easily!

• In a hypothetical early universe with more neutrons than protons (e.g., if m_n were less than m_p), BBN could probably make heavier elements through neutron captures


• Q. What would happen if the (proton-rich) early universe (or some sub-regions of it) had a much lower entropy $(S/n_b \sim 100)$?

< □ > < □ > < □ > < □ > < □ > < □ >

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

Neutrino-driven outflows in core-collapse supernovae

Slide from George Fuller

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

Effect of hydrodynamics

Mo and Ru in metal poor stars

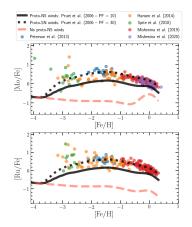


Figure: Observed abundances of [Mo/Fe] and [Ru/Fe] in metal poor stars, and predicted abundances for a *p*-rich proto-NS wind model from Pruet *et al.* (2006), as a function of metallicity [Fe/H] (F. Vincenzo *et al.*, MNRAS 508, 3499–3507 (2021)). Note the scatter at low metallicities.

Supernovae, neutrinos, and the origin of elements

p-rich elements, & νp -process

p-process mechanisms [Rauscher *et al.* (2013)]

- γ -process (Woosley and Howard, 1978, ApJS 36, 285)
 - Photodisintegration of neutron rich isotopes either via (γ, n) or via $(\gamma, p)/(\gamma, \alpha) + \beta$ -decays
 - Occurs during explosive O/Ne shell burning in massive stars, or in exploding white dwarfs (type-1a supernovae)
 - Can make some 92 Mo but underproduces 94 Mo and 96,98 Ru
- *v*-process (Woosley *et al.*, ApJ, 356, 272 (1990); Fuller and Meyer, ApJ 453, 792 (1995))
 - Neutrino captures on stable nuclei
 - May occur in core-collapse supernova environments where ν fluxes large enough to offset small cross-sections
 - Outflowing material must remain in close proximity to NS for significant length of time — difficult to implement

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

p-process mechanisms

- *rp*-process (Schatz *et al.*, Phys. Rept. 294, 167–263 (1998);
 L. Bildsten, astro-ph/9709094)
 - $\bullet\,$ Rapid proton capture followed by β^+ decays
 - Occurs on the surface of accreting neutron stars where thermonuclear H/He burning drives up temperatures enough for a short amount of time to overcome Coulomb repulsion
 - $\bullet\,$ Hindered by β^+ decay "waiting points" along the nucleosynthesis chain
- α-process (Hoffman *et al.* ApJ, 460, 478 (1996))
 - Proceeds via chain of $\alpha,\,n,$ and p captures following $\alpha\text{-rich}$ freezeout in neutrino-driven outflows with $Y_e\sim 0.48\text{--}0.49$
 - ${\, {\rm \bullet} \,}$ Can make $^{92}{\rm Mo}$ but not much $^{94}{\rm Mo}$ or $^{96,98}{\rm Ru}$
 - Makes appreciable amounts of ⁹²Nb (comparable to ⁹²Mo)

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

Effect of hydrodynamics

Outflow profiles for T vs t

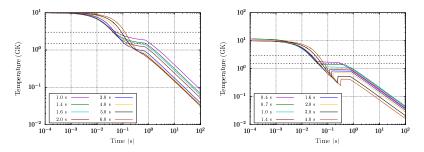
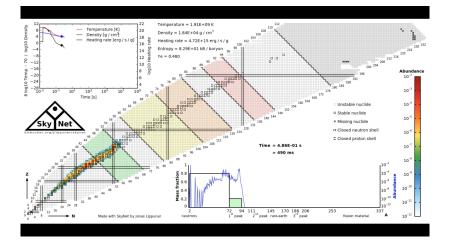


Figure: A comparison of Temperature vs time profiles for self-consistently modeled 13 M_{\odot} (supersonic) and 9.5 M_{\odot} (subsonic) progenitor outflows.

< 同 ト < ∃ ト

 $p\text{-rich elements}, \& \nu p\text{-process} \\ 000000000$

Effect of hydrodynamics


The Niobium puzzle

- Another *p*-rich nucleus, 92 Nb, is also known to occur in nature, but cannot be made in the νp -process shielded from *p*-rich nuclear flows by the neighboring stable 92 Mo
- Can be made in the γ-process production ratio of ⁹²Nb/⁹²Mo, convolved with suitable models for galactic chemical evolution (GCE) and ISM mixing, is roughly consistent with the inferred ratio in the early solar system
- This is used as an argument that any process that produces the bulk of 92 Mo must also produce 92 Nb concurrently, thereby putting the νp process in doubt [Rauscher *et al.* (2013)]
- However: (i) considerable uncertainties in both the production and the inferred early solar system ratios of ⁹²Nb/⁹²Mo, and (ii) consistency between ratios doesn't preclude two separate processes from being dominant sources of ⁹²Nb and ⁹²Mo respectively

p-rich elements, & $\nu p\text{-process}$ 00000000

Effect of hydrodynamics

The α -process ($Y_e = 0.48$) — the Niobium solution

Amol V. Patwardhan

 νp -process in ν -driven outflows 41/26

NuDM-2022

э

イロト イポト イヨト イヨト