

### Status of WP2 (On-detector power distribution)

F.Faccio, S.Michelis, G.Blanchot, C.Fuentes, B.Allongue - decrease in manpower as from Jan 1<sup>st</sup> with departure of S.Orlandi (fellow)

## Outline

ASIC
Technology
Design
Full converter boards
Air-core inductor
Low-noise board design
Integration in detector systems

|                         | AMIS2        |
|-------------------------|--------------|
| Full control loop       | $\checkmark$ |
| Dead times'<br>handling | Fixed        |
| On-chip regulator       | No           |
| Soft Start              | Simple RC    |
| Over-I protection       | No           |
| Over-T protection       | No           |
| Under-V disable         | No           |

|                         | AMIS2        | IHP1                       |
|-------------------------|--------------|----------------------------|
| Full control loop       | $\checkmark$ | $\checkmark$               |
| Dead times'<br>handling | Fixed        | Adaptive<br>(QSW)          |
| On-chip regulator       | No           | No                         |
| Soft Start              | Simple RC    | Simple RC with comparators |
| Over-I protection       | No           | No                         |
| Over-T protection       | No           | No                         |
| Under-V disable         | No           | No                         |

|                         | AMIS2        | IHP1                       | IHP2                               |  |
|-------------------------|--------------|----------------------------|------------------------------------|--|
| Full control loop       | $\checkmark$ | $\checkmark$               | $\checkmark$                       |  |
| Dead times'<br>handling | Fixed        | Adaptive<br>(QSW)          | Adaptive<br>(QSW and<br>CCM, sharp |  |
| On-chip regulator       | No           | No                         | $\checkmark$                       |  |
| Soft Start              | Simple RC    | Simple RC with comparators | Full sequence with comparators     |  |
| Over-I protection       | No           | No                         | $\checkmark$                       |  |
| Over-T protection       | No           | No                         | No                                 |  |
| Under-V disable         | No           | No                         | No                                 |  |

|                         | AMIS2        | IHP1                       | IHP2                               | AMIS3        |
|-------------------------|--------------|----------------------------|------------------------------------|--------------|
| Full control loop       | $\checkmark$ | $\checkmark$               | $\checkmark$                       | $\checkmark$ |
| Dead times'<br>handling | Fixed        | Adaptive<br>(QSW)          | Adaptive<br>(QSW and<br>CCM, sharp | Fixed        |
| On-chip regulator       | No           | No                         | $\checkmark$                       | $\checkmark$ |
| Soft Start              | Simple RC    | Simple RC with comparators | Full sequence with comparators     | Simple RC    |
| Over-I protection       | No           | No                         | $\checkmark$                       | No           |
| Over-T protection       | No           | No                         | No                                 | No           |
| Under-V disable         | No           | No                         | No                                 | No           |

|                         | AMIS2        | IHP1                       | IHP2                               | AMIS3        | AMIS4                               |
|-------------------------|--------------|----------------------------|------------------------------------|--------------|-------------------------------------|
| Full control loop       | $\checkmark$ | $\checkmark$               | $\checkmark$                       | $\checkmark$ | $\checkmark$                        |
| Dead times'<br>handling | Fixed        | Adaptive<br>(QSW)          | Adaptive<br>(QSW and<br>CCM, sharp | Fixed        | Adaptive<br>(QSW and<br>CCM, smooth |
| On-chip regulator       | No           | No                         | $\checkmark$                       | $\checkmark$ | $\checkmark$                        |
| Soft Start              | Simple RC    | Simple RC with comparators | Full sequence with comparators     | Simple RC    | State machine                       |
| Over-I protection       | No           | No                         | $\checkmark$                       | No           | $\checkmark$                        |
| Over-T protection       | No           | No                         | No                                 | No           | $\checkmark$                        |
| Under-V disable         | No           | No                         | No                                 | No           | $\checkmark$                        |



• Converter identical to AMIS2, but with the only addition of onchip Linear Voltage Regulator to provide 3.3V from the unique input line (10V)



- Converter identical to AMIS2, but with the only addition of onchip Linear Voltage Regulator to provide 3.3V from the unique input line (10V)
- Quickly prepared by S.Michelis after TWEPP and submitted for manufacturing in October 2010



- Converter identical to AMIS2, but with the only addition of onchip Linear Voltage Regulator to provide 3.3V from the unique input line (10V)
- Quickly prepared by S.Michelis after TWEPP and submitted for manufacturing in October 2010
- Expected delivery: mid-March



- Converter identical to AMIS2, but with the only addition of onchip Linear Voltage Regulator to provide 3.3V from the unique input line (10V)
- Quickly prepared by S.Michelis after TWEPP and submitted for manufacturing in October 2010
- Expected delivery: mid-March
- Purpose:



- Converter identical to AMIS2, but with the only addition of onchip Linear Voltage Regulator to provide 3.3V from the unique input line (10V)
- Quickly prepared by S.Michelis after TWEPP and submitted for manufacturing in October 2010
- Expected delivery: mid-March
- Purpose:
  - Test again On-Semi hardware (AMIS2 manufactured in first semester 2009), especially radiation



- Converter identical to AMIS2, but with the only addition of onchip Linear Voltage Regulator to provide 3.3V from the unique input line (10V)
- Quickly prepared by S.Michelis after TWEPP and submitted for manufacturing in October 2010
- Expected delivery: mid-March
- Purpose:
  - Test again On-Semi hardware (AMIS2 manufactured in first semester 2009), especially radiation
  - Provide a working rad-tol converter not needing external regulator to colleagues working on system integration



- Converter identical to AMIS2, but with the only addition of onchip Linear Voltage Regulator to provide 3.3V from the unique input line (10V)
- Quickly prepared by S.Michelis after TWEPP and submitted for manufacturing in October 2010
- Expected delivery: mid-March
- Purpose:
  - Test again On-Semi hardware (AMIS2 manufactured in first semester 2009), especially radiation
  - Provide a working rad-tol converter not needing external regulator to colleagues working on system integration
- Packaged in QFN32 for system testing (as AMIS2)





- Internal BGP ref (as AMIS2) and Linear Voltage Regulators to provide on-chip 3.3V from unique input rail
- Integrated feedback loop with bandwidth of 100Khz can be lowered with external passives
- Internal oscillator fixed at 2MHz, tunable with external components
- Vout set to 2.5V, tunable with external components
- Protection features:
  - SEU-protected state machine rules entrance and exit from failure states and beginning of Soft Start (about 2ms long)
  - Under-voltage detection at the input enables converter only above 5V
  - Over-T detection turns off the converter when on-chip T exceeds 100C
  - Over-current detection is implemented on a cycle-by-cycle basis, and limits max current on HS transistor on each cycle. After 32 consecutive detections (synchronous with clock), the converter is reset and a Soft Start begins
- Other features:
  - Enable pin to turn on-off the converter
  - \* Power good output flag (only asserted during 'good' state of the converter, with regulated Vout)
- Chip Size: ~2.875 x 2.55 mm2
- Packaged in QFN-EP 32 (first lot in QFN48 for functional test)
- To reduce parasitic resistance, unusual bonding configuration chosen (pads in the middle of the chip). Discussions ongoing via IMEC with packaging house (ASE) to find appropriate, cheap and reliable assembly
- Submitted to IMEC MPW on January 24th. Purchase of 1 extra wafer should ensure availability of at least 100 parts (probably more)
- We expect testing in summer

ECB meeting, Feb2011

#### F.Faccio - CERN/PH/ESE

• A simplified model for the converter has been developed in the Simetrix Simplis simulation tool

Wednesday, February 9, 2011

- A simplified model for the converter has been developed in the Simetrix Simplis simulation tool
  - It contains all features of the AMIS4 ASIC

Wednesday, February 9, 2011

- A simplified model for the converter has been developed in the Simetrix Simplis simulation tool
  - It contains all features of the AMIS4 ASIC
  - It was very useful for the design of the protection scheme (quick full simulation of the full converter enables prompt detection of potential conflicts)

- A simplified model for the converter has been developed in the Simetrix Simplis simulation tool
  - It contains all features of the AMIS4 ASIC
  - It was very useful for the design of the protection scheme (quick full simulation of the full converter enables prompt detection of potential conflicts)
  - It is used to simulate the full converter including in and out filters and analyze the transient behavior at start-up and shut down, and in case of under-voltage or overcurrent

- A simplified model for the converter has been developed in the Simetrix Simplis simulation tool
  - It contains all features of the AMIS4 ASIC
  - It was very useful for the design of the protection scheme (quick full simulation of the full converter enables prompt detection of potential conflicts)
  - It is used to simulate the full converter including in and out filters and analyze the transient behavior at start-up and shut down, and in case of under-voltage or overcurrent
  - It will be used to simulate the converter embedded in a detector system



ECB meeting, Feb2011

F.Faccio - CERN/PH/ESE

 Example: start-up at 1A load followed by step-increases of 2A. At 7A, overcurrent protection is active.



ECB meeting, Feb2011

F.Faccio - CERN/PH/ESE





- Tolerance to B field imposes air core coils
  - \* Air core typical inductance values: 5-700 nH MAX





- Tolerance to B field imposes air core coils
  - \* Air core typical inductance values: 5-700 nH MAX
- Toroidal topology was selected in 2009
  - Compact geometry
  - Radiates significantly less magnetic field than other topologies
  - Air core toroidal inductors not available commercially: custom development enabled for mass production is required





- Tolerance to B field imposes air core coils
  - \* Air core typical inductance values: 5-700 nH MAX
- Toroidal topology was selected in 2009
  - Compact geometry
  - Radiates significantly less magnetic field than other topologies
  - Air core toroidal inductors not available commercially: custom development enabled for mass production is required
- Development succeeded with Coilcraft:
  - \* 220nH/30mΩ air core toroid
  - Coil mounted on plastic stand-off to fit precisely above the converter ASIC
  - Prototypes delivered in 2010. One sample successfully radiation tested at PS (8E15 p/cm<sup>2</sup>)
  - Order for production of 500 samples issued, delivery end of March
  - \* Expected total mass: slightly less than 0.4g









ECB meeting, Feb2011

F.Faccio - CERN/PH/ESE

Roadmap for EMC optimization of DCDCs





- Roadmap for EMC optimization of DCDCs
  - \* Critical stray capacitances identification.





#### Roadmap for EMC optimization of DCDCs

- \* Critical stray capacitances identification.
- \* Critical stray inductances identification.





#### Roadmap for EMC optimization of DCDCs

- \* Critical stray capacitances identification.
- \* Critical stray inductances identification.
- \* On board parasitic magnetic couplings identification.





- Roadmap for EMC optimization of DCDCs
  - \* Critical stray capacitances identification.
  - \* Critical stray inductances identification.
  - \* On board parasitic magnetic couplings identification.
- Noise optimization of DCDCs :





#### Roadmap for EMC optimization of DCDCs

- \* Critical stray capacitances identification.
- \* Critical stray inductances identification.
- \* On board parasitic magnetic couplings identification.
- Noise optimization of DCDCs :
  - Optimal placement of parts obtained through electromagnetic simulation of board layouts.





#### Roadmap for EMC optimization of DCDCs

- \* Critical stray capacitances identification.
- \* Critical stray inductances identification.
- \* On board parasitic magnetic couplings identification.
- Noise optimization of DCDCs :
  - Optimal placement of parts obtained through electromagnetic simulation of board layouts.
  - Optimal PCB layout structure that minimizes the critical stray capacitances and inductances.





#### Roadmap for EMC optimization of DCDCs

- \* Critical stray capacitances identification.
- \* Critical stray inductances identification.
- \* On board parasitic magnetic couplings identification.
- Noise optimization of DCDCs :
  - Optimal placement of parts obtained through electromagnetic simulation of board layouts.
  - Optimal PCB layout structure that minimizes the critical stray capacitances and inductances.
  - Addition of shield for segregation of noisy and quiet areas of PCB.













ECB meeting, Feb2011

• Using the AMIS2 ASIC









ECB meeting, Feb2011

- Using the AMIS2 ASIC
  - \* Optimization principles fully applied







- Using the AMIS2 ASIC
  - \* Optimization principles fully applied
  - Very compact design, need only for few external components





• Using a commercial DCDC circuit (LTC3605) - SM01C





ECB meeting, Feb2011

- Using the AMIS2 ASIC
  - Optimization principles fully applied
  - Very compact design, need only for few external components





- Using a commercial DCDC circuit (LTC3605) SM01C
  - Designed to provide up to 5A to match requirements of ATLAS SCT prototype modules







ECB meeting, Feb2011

F.Faccio - CERN/PH/ESE

• A stave module was powered with two SM01C converters and its performance was compared with the one obtained using a linear power supply (test done at Liverpool, then at CERN with UniGe module)



- A stave module was powered with two SM01C converters and its performance was compared with the one obtained using a linear power supply (test done at Liverpool, then at CERN with UniGe module)
- A residual magnetic field emitted from the DCDC board fitted with plastic coated shield raises the noise of the front-end



- A stave module was powered with two SM01C converters and its performance was compared with the one obtained using a linear power supply (test done at Liverpool, then at CERN with UniGe module)
- A residual magnetic field emitted from the DCDC board fitted with plastic coated shield raises the noise of the front-end
- When using a copper foil shield instead, the reference noise levels are recovered



- A stave module was powered with two SM01C converters and its performance was compared with the one obtained using a linear power supply (test done at Liverpool, then at CERN with UniGe module)
- A residual magnetic field emitted from the DCDC board fitted with plastic coated shield raises the noise of the front-end
- When using a copper foil shield instead, the reference noise levels are recovered
- The compatibility between SM01C and the ATLAS stave modules is now achieved, using copper foil shields



#### Shielding EM fields

## Shielding EM fields

 Measurements with ATLAS SCT modules evidence the need for optimizing the shield

## Shielding EM fields

- Measurements with ATLAS SCT modules evidence the need for optimizing the shield
- 2 approaches have been followed to prototype manufacturable shields, both based on a coated plastic support. Metal (Cu) is either painted as a Cu-loaded varnish, or deposited (on-going work)
  - A dedicated test board has been developed to measure the effectiveness of all shields and define the optimum material and thickness
  - A simulation study will be performed and results compared to experimental benchmarks

12









and work mainly



lunes 17 de enero de 2011



• Phase2 upgrade of ATLAS endcap tracker (Barcelona, P.Bernabeu)



- Phase2 upgrade of ATLAS endcap tracker (Barcelona, P.Bernabeu)
- Phase2 upgrade of ATLAS TileCal (Argonne NatLab, Chicago, G.Drake)



lunes 17 de enero de 2011

- Phase2 upgrade of ATLAS endcap tracker (Barcelona, P.Bernabeu)
- Phase2 upgrade of ATLAS TileCal (Argonne NatLab, Chicago, G.Drake)
- Phase1/2 upgrade of ATLAS LAr calorimeter (BNL, J.Kierstead)



lunes 17 de enero de 2011

- Phase2 upgrade of ATLAS endcap tracker (Barcelona, P.Bernabeu)
- Phase2 upgrade of ATLAS TileCal (Argonne NatLab, Chicago, G.Drake)
- Phase1/2 upgrade of ATLAS LAr calorimeter (BNL, J.Kierstead)
- Phase2 upgrade of LHCb calorimeter (Barcelona, D.Gascon)

ECB meeting, Feb2011

F.Faccio - CERN/PH/ESE

## Summary

- ASIC
  - Technology
    - \* On-semi 0.35um technology fully validated. This is baseline for Phase1 developments
    - \* IHP 0.25um technology still under evaluation, in collaboration with IHP. SEB test in April should tell if this technology is quickly usable for our development
  - Design
    - \* 2 prototypes in production in On-Semi 0.35um. AMIS4 contains full protection features and is very close to a final design (to be confirmed by measurements...)
- Full converter boards
  - \* Low-noise board design
    - \* Know-how acquired and confirmed by results
    - Low-noise and compact prototypes available for both ASIC and commercial DCDC
  - \* Special components
    - \* Inductor design chosen, transferred to industry and in production
    - \* Shield requirements being studied, and prototypes produced
  - Integration in detector systems
    - \* Measurements on different systems confirm that power can be provided by DCDC converters without impacting the noise performance