NEUTRINOS: WHERE WE ARE. WHERE WE ARE HEADINGTO.

중성미자: 우리는 어디에 있습니까 우리는 어디로 향하고 있습니까

> Gabriela Barenboim (UV-IFIC and KIAS) ChungAng University, August 17

2012 Two major discoveries in particle physics

A SM-like Higgs boson (ATLAS, CMS)
 The key to EWSB and a possible window to

• θ_{13} ~ 10° (T2K, MINOS, Daya Bay, RENO) about as large as it could have been ! The door to CP Violation in the leptonic sector

Some 100 years ago

Studies of β decay revealed a continuous energy spectrum.

Another anomaly was the fact that the nuclear recoil was not in the direction opposite to the momentum of the electron.

The emission of another particle was a probable explanation of this behaviour, but searches found no evidence of either mass or charge.

A Dirac field is described by a four component spinor

Standard Model of Particle Physics

Gauge Theory based on the group:

$$SU(3) \times SU(2) \times U(1)$$

 $SU(3) \Rightarrow Quantum Chromodynamics$

Strong Force (Quarks and Gluons)

 $SU_L(2) imes U(1) \Rightarrow$ ElectroWeak Interactions broken to $U_{EM}(1)$ by HIGGS

$SU_L(2) \times U_Y(1) \Rightarrow U_{EM}(1)$

Force Carriers: W^{\pm} , Z^0 and γ masses: 80, 91 and 0 GeV

quark, SU(2) doublets:
$$\begin{pmatrix} u \\ d \end{pmatrix}_L$$
, $\begin{pmatrix} c \\ s \end{pmatrix}_L$, $\begin{pmatrix} t \\ b \end{pmatrix}_L$

up-quark, SU(2) singlets: u_R, c_R, t_R

down-quark, SU(2) singlets: d_R, s_R, b_R

lepton, SU(2) doublets:
$$\left(\begin{array}{c} \nu_e \\ e \end{array} \right)_L, \left(\begin{array}{c} \nu_\mu \\ \mu \end{array} \right)_L, \left(\begin{array}{c} \nu_\tau \\ \tau \end{array} \right)_L$$

neutrino, SU(2) singlets: ---

charge lepton, SU(2) singlets: e_R, μ_R, τ_R

5

Electron mass

comes from a term of the form

$$\bar{L}\phi e_R$$

Absence of ν_R

forbids such a mass term (dim 4)

for the Neutrino

Therefore in the SM neutrinos are massless and hence travel at speed of light.

There exist three fundamental and discrete transformations in nature:

 $\begin{array}{lll} \bullet & {\rm Parity} & \mathcal{P} & \vec{x} \to -\bar{x} \\ \bullet & {\rm Time\ reversal} & \mathcal{T} & t \to -t \\ \bullet & {\rm Charge\ conjugation} & \mathcal{C} & q \to -q \end{array}$

 \mathcal{P} , \mathcal{T} and \mathcal{C} are conserved in the classical theories of mechanics and electrodynamics!

 $\mathcal{CPT} \leftrightarrow \mathsf{Lorentz}$ invariance \oplus unitarity: is an essential building block of field theory

CPT: L particle \leftrightarrow R antiparticle

Neutrinos in the MSM are massless and exist only in two states: particle with negative helicity and antiparticle with positive one: Weyl fermion

Summary of ν 's in SM:

Three flavors of massless neutrinos

$$W^{-} \to l_{\alpha}^{-} + \bar{\nu}_{\alpha}$$

$$W^{+} \to l_{\alpha}^{+} + \nu_{\alpha}$$

$$\alpha = e, \mu, \text{ or } \tau$$

Anti-neutrino, $\bar{\nu}_{\alpha}$, has +ve helicity, Right Handed

Neutrino, ν_{α} , has -ve helicity, Left Handed

 u_L and $\bar{\nu}_R$ are CPT conjugates

massless implies helicity = chirality

Beyond the SM

What if Neutrino have a MASS?

speed is less than c therefore time can pass

and

Neutrinos can change character!!!

What are the stationary states?

How are they related to the interaction states?

NEUTRINO OSCILLATIONS:

Two Flavors

flavor eigenstates ≠ mass eigenestates

$$\begin{pmatrix} \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix}$$

W's produce ν_{μ} and/or $\nu_{ au}$'s

but ν_1 and ν_2 are the states

that change by a phase over time, mass eigenstates.

$$|\nu_j\rangle \to e^{-ip_j \cdot x} |\nu_j\rangle \qquad p_j^2 = m_j^2$$

 $\alpha, \beta \dots$ flavor index $i, j \dots$ mass index

$$|\nu_{\mu}\rangle = \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle$$

Propogation:

$$\cos \theta e^{-ip_1 \cdot x} |\nu_1\rangle + \sin \theta e^{-ip_2 \cdot x} |\nu_2\rangle$$

Detection:

$$\begin{split} |\nu_1\rangle &= \cos\theta |\nu_\mu\rangle - \sin\theta |\nu_\tau\rangle \\ |\nu_2\rangle &= \sin\theta |\nu_\mu\rangle + \cos\theta |\nu_\tau\rangle \\ \left(\begin{smallmatrix} \nu_\mu \\ \nu_\tau \end{smallmatrix}\right) &= \left(\begin{smallmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{smallmatrix}\right) \left(\begin{smallmatrix} \nu_1 \\ \nu_2 \end{smallmatrix}\right) \end{split}$$

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) = |\cos \theta(e^{-ip_1 \cdot x})(-\sin \theta) + \sin \theta(e^{-ip_2 \cdot x})\cos \theta|^2$$

Same E, therefore
$$p_j=\sqrt{E^2-m_j^2}\approx E-\frac{m_j^2}{2E}$$

$$e^{-ip_j\cdot x}=e^{-iEt}e^{-ip_jL}\approx e^{-i(Et-EL)}-e^{-im_j^2L/2E}$$

$$P(\nu_\mu\to\nu_\tau)=\sin^2\theta\cos^2\theta|e^{-im_2^2L/2E}-e^{-im_1^2L/2E}|^2$$

 $P(\nu_{\mu} \rightarrow \nu_{\tau}) = |\cos\theta(e^{-ip_1 \cdot x})(-\sin\theta) + \sin\theta(e^{-ip_2 \cdot x})\cos\theta|^2$

$$P(\nu_{\mu} \to \nu_{\tau}) = \sin^2 2\theta \sin^2 \frac{\delta m^2 L}{4E}$$

 $\delta m^2 = m_2^2 - m_1^2$ and $\frac{\delta m^2 L}{4E} \equiv \Delta$ kinematic phase:

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) = |\cos\theta(e^{-ip_1 \cdot x})(-\sin\theta) + \sin\theta(e^{-ip_2 \cdot x})\cos\theta|^2$$

Same E, therefore
$$p_j = \sqrt{E^2 - m_j^2} \approx E - \frac{m_j^2}{2E}$$

$$e^{-ip_j \cdot x} = e^{-iEt}e^{-ip_j L} \approx e^{-i(Et-EL)} e^{-im_j^2 L/2E}$$

$$P(\nu_{\mu} \to \nu_{\tau}) = \sin^2 \theta \cos^2 \theta |e^{-im_2^2 L/2E} - e^{-im_1^2 L/2E}|^2$$

$$P(\nu_{\mu} \to \nu_{\tau}) = \sin^2 2\theta \sin^2 \left(\frac{\delta m^2 L}{4E} \frac{c^4}{hc}\right)$$

Appearance:

$$P(\nu_{\mu} \to \nu_{\tau}) = \sin^2 2\theta \sin^2 \frac{\delta m^2 L}{4E}$$

Disappearance:

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^2 2\theta \sin^2 \frac{\delta m^2 L}{4E}$$

Probability for Neutrino Oscillation in Vacuum

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\text{Amp}(\nu_{\alpha} \to \nu_{\beta})|^2 =$$

$$P_{lphaeta}=\sin^22 heta~\sin^2\left(rac{\Delta m^2\,L}{4E_
u}
ight)
ightarrow$$
 appearance

$$P_{\alpha\alpha} = 1 - P_{\alpha\beta} < 1 \rightarrow \text{disappearance}$$

Probability for Neutrino Oscillation in Vacuum
$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |\mathrm{Amp}(\nu_{\alpha} \rightarrow \nu_{\beta})|^{2} =$$

$$P_{\alpha\beta} = \sin^{2}2\theta \qquad \Delta m^{2} \qquad L$$

$$P_{\alpha\alpha} = 1 - P_{\alpha\beta} \qquad \Delta m^{2} \qquad (eV^{2}) \qquad L(km)$$

$$L/E \text{ becomes crucial } ||||$$

MicroBooNE was built to check the MiniBooNE results!

Looking for signals using several final state channels

The collaboration did not perform an oscillation analysis

A combined analysis shows that MicroBooNE can not exclude the region of parameter space preferred by MiniBooNE

2201.01724

In principle, it is straightforward

 \star CPV \Rightarrow different oscillation rates for vs and \overline{v} s

$$P(\nu_{\mu} \to \nu_{e}) - P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) = 4s_{12}s_{13}c_{13}^{2}s_{23}c_{23}\sin\delta$$

$$\times \left[\sin\left(\frac{\Delta m_{21}^{2}L}{4E}\right) \times \sin\left(\frac{\Delta m_{23}^{2}L}{4E}\right) \times \sin\left(\frac{\Delta m_{31}^{2}L}{4E}\right)\right]$$

- **★** Requires $\{\theta_{12}, \theta_{13}, \theta_{23}\} \neq \{0, \pi\}$
 - now know that this is true, $\theta_{13} \approx 9^{\circ}$
 - ullet but, despite hints, don't yet know "much" about δ
- \star So "just" measure $P(v_{\mu} \rightarrow v_{e}) P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$?
- ★ Not quite, there is a complication...

Neutrino Oscillations in Matter

★ Accounting for this potential term, gives a Hamiltonian that is not diagonal in the basis of the mass eigenstates

$$\mathcal{H}\begin{pmatrix} |\mathbf{v}_{1}\rangle \\ |\mathbf{v}_{2}\rangle \\ |\mathbf{v}_{3}\rangle \end{pmatrix} = i\frac{\mathrm{d}}{\mathrm{d}t}\begin{pmatrix} |\mathbf{v}_{1}\rangle \\ |\mathbf{v}_{2}\rangle \\ |\mathbf{v}_{3}\rangle \end{pmatrix} = \begin{pmatrix} E_{1} & 0 & 0 \\ 0 & E_{2} & 0 \\ 0 & 0 & E_{3} \end{pmatrix} \begin{pmatrix} |\mathbf{v}_{1}\rangle \\ |\mathbf{v}_{2}\rangle \\ |\mathbf{v}_{3}\rangle \end{pmatrix} + V|\mathbf{v}_{e}\rangle$$

★ Complicates the simple picture !!!!

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) - P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}) = \\ \text{ME} \quad & \frac{16A}{\Delta m_{31}^{2}} \sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) c_{13}^{2} s_{13}^{2} s_{23}^{2} (1 - 2s_{13}^{2}) \\ \text{ME} \quad & -\frac{2AL}{E} \sin\left(\frac{\Delta m_{31}^{2}L}{4E}\right) c_{13}^{2} s_{13}^{2} s_{23}^{2} (1 - 2s_{13}^{2}) \\ \text{CPV} \quad & -8\frac{\Delta m_{21}^{2}L}{2E} \sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) \sin\delta \right| s_{13} c_{13}^{2} c_{23} s_{23} c_{12} s_{12} \\ \text{with } A = 2\sqrt{2} G_{F} n_{e} E = 7.6 \times 10^{-5} \text{eV}^{2} \cdot \frac{\rho}{\text{g cm}^{-3}} \cdot \frac{E}{\text{GeV}} \end{split}$$

Experimental Strategy

FITHER!

- ★ Keep L small (~200 km): so that matter effects are insignificant
 - First oscillation maximum:

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Longrightarrow \quad E_{\rm v} < 1 \, {\rm GeV}$$

- Want high flux at oscillation maximum
 - Off-axis beam: narrow range of neutrino energies

OR:

- ★ Make L large (>1000 km): measure the matter effects (i.e. MH)
 - First oscillation maximum:

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2} \quad \Longrightarrow \quad E_{\rm v} > 2 \,{\rm GeV}$$

- Unfold CPV from Matter Effects through E dependence
 - On-axis beam: wide range of neutrino energies

Non unitarity

$$N = \begin{bmatrix} 1 - \alpha_{ee} & 0 & 0 \\ \alpha_{\mu e} & 1 - \alpha_{\mu \mu} & 0 \\ \alpha_{\tau e} & \alpha_{\tau \mu} & 1 - \alpha_{\tau \tau} \end{bmatrix} U.$$

CPT violation

$$\frac{\mid m(K_0) - m(\overline{K_0}) \mid}{m_{K-av}} < 10^{-18}$$
 $m_{K-av} \approx \frac{1}{2} \ 10^9 \ \text{eV}$

$$(m(K_0) - m(\overline{K_0}))(m(K_0) + m(\overline{K_0})) < 2 \ 10^{-18} m_{K-av}^2$$

 $|m^2(K_0) - m^2(\overline{K_0})| \approx \frac{1}{2} \text{ eV}^2$

$$\begin{split} |\Delta m_{21}^2 - \Delta \overline{m}_{21}^2| &< 4.7 \times 10^{-5} \, \text{eV}^2, \\ |\Delta m_{31}^2 - \Delta \overline{m}_{31}^2| &< 3.7 \times 10^{-4} \, \text{eV}^2, \\ |\sin^2 \theta_{12} - \sin^2 \overline{\theta}_{12}| &< 0.14, \\ |\sin^2 \theta_{13} - \sin^2 \overline{\theta}_{13}| &< 0.03, \\ |\sin^2 \theta_{23} - \sin^2 \overline{\theta}_{23}| &< 0.32. \end{split}$$

G.B., C. Ternes and M. Tortola, 2005.05975, JHEP2020

Violations of Lorentz invariance Lorentz violation
$$(h_{\mathrm{eff}})_{ab} = \frac{m_{ab}^2}{2E} + \frac{1}{E} \big[(a_L)^\alpha p_\alpha - (c_L)^{\alpha\beta} p_\alpha p_\beta \big]_{ab}$$
 standard Lorentz violates both CPT and Lorentz invariance

As usual, the oscillation probability is governed by the difference of the eigenvalues of the effective hamiltonian.
$$\sin^2(\Delta_{ab} \ L/2)$$

$$m_{ab}^2 L/E$$

$$(c^{\alpha\beta})_{ab} \ LE$$

