Quantum Computing Solutions for High-Energy Physics

Yasser Omar
contact.yasser@pqi.pt

PQI – Portuguese Quantum Institute
Instituto Superior Técnico, Universidade de Lisboa
Physics of Information and Quantum Technologies Group, CeFEMA,
QuantHEP – Quantum Computing Solutions for High-Energy Physics
QuantERA project, 2020-2023

quanthep.eu
Written in 2018, submitted in 2019, kicked-off in Lisbon in January 2020, with the goals to:

1. Investigate the potential of quantum computation for particle tracking and event selection.

2. Develop the quantum simulation of events.

3. Promote the collaboration between the Quantum Computation / Quantum Technologies and the HEP communities.
The problem of particle tracking
The Tracking Problem
To identify the particles created in these collisions and scattered in all directions, we need to reconstruct their trajectories: tracking.
Tracking: a challenging computational problem
Tracking: a challenging computational problem

If computational performance does not meet the increasing demand, in HL-LHC or in the 100 TeV potential FCC, an immense amount of data will have to be discarded, significantly reducing the chances of observing rare events!
How hard is particle tracking?
Global methods of pattern recognition have the common property to treat all hit information in an equal and unbiased way. Essentially, they are clustering algorithms in some feature space.

Local methods reconstruct tracks one by one. The algorithm that we describe is an typical example of this class.
Global methods of pattern recognition have the common property to treat all hit information in an equal and unbiased way. Essentially, they are clustering algorithms in some feature space.

Local methods reconstruct tracks one by one.

The algorithm that we describes is an typical example of this class.
Combinatorial Track Finder

The CMS Collaboration,
Description and performance of track and primary-vertex reconstruction with the CMS tracker,
Journal of Instrumentation 9, 10009 (2014).

- **Seed generation:** Start with initial estimates of the track parameters (seeds).
- **Track finding:** Propagate tracks from layer to layer with Combinatorial Kalman Filter. Stop when outermost layers are reached.
- **Track cleaning:** Eliminate tracks corresponding to same particle.
- **Track fitting:** Smooth the trajectories.
- **Track selection:** Select based on quality criteria.
Combinatorial Track Finder

The CMS Collaboration,
Description and performance of track and primary-vertex reconstruction with the CMS tracker,
Journal of Instrumentation 9, 10009 (2014).

- **Seed generation**: Start with initial estimates of the track parameters (seeds).
- **Track finding**: Propagate tracks from layer to layer with Combinatorial Kalman Filter. Stop when outermost layers are reached.
- **Track cleaning**: Eliminate tracks corresponding to same particle.
- **Track fitting**: Smooth the trajectories.
- **Track selection**: Select based on quality criteria.

We want to develop a computational complexity analysis of this algorithm, and namely of these 5 stages, to:

- Establish formally how efficient this algorithm is.
- Investigate if it is optimal, or if it can be improved...
 - ... including with quantum computation.
<table>
<thead>
<tr>
<th>Tracking stages</th>
<th>Input size</th>
<th>Output size</th>
<th>Classical complexity</th>
<th>Quantum complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeding</td>
<td>$O(n)$</td>
<td>k_{seed}</td>
<td>$O\left(n^c\right)$</td>
<td>$\tilde{O}\left(\sqrt{k_{\text{seed}} \cdot n^c}\right)$</td>
</tr>
<tr>
<td>(Theorem 2)</td>
<td></td>
<td></td>
<td>(Theorem 3)</td>
<td></td>
</tr>
<tr>
<td>Track Building</td>
<td>$k_{\text{seed}} + O(n)$</td>
<td>k_{cand}</td>
<td>$O(k_{\text{seed}} \cdot n)$</td>
<td>$\tilde{O}\left(k_{\text{seed}} \cdot \sqrt{n}\right)$</td>
</tr>
<tr>
<td>(Theorem 4)</td>
<td></td>
<td></td>
<td>(Theorem 5)</td>
<td></td>
</tr>
<tr>
<td>Cleaning (original)</td>
<td>k_{cand}</td>
<td>$O(k_{\text{cand}}^2)$</td>
<td>$O(k_{\text{cand}}^2)$</td>
<td>$-$</td>
</tr>
<tr>
<td>(Theorem 6)</td>
<td></td>
<td></td>
<td>(Theorem 7)</td>
<td></td>
</tr>
<tr>
<td>Cleaning (improved)</td>
<td>k_{cand}</td>
<td>$O(k_{\text{cand}})$</td>
<td>$\tilde{O}(k_{\text{cand}})$</td>
<td>$-$</td>
</tr>
<tr>
<td>(Theorem 8)</td>
<td></td>
<td></td>
<td>(Theorem 9)</td>
<td></td>
</tr>
<tr>
<td>Selection</td>
<td>$O(k_{\text{cand}})$</td>
<td>$O(k_{\text{cand}})$</td>
<td>$O(k_{\text{cand}})$</td>
<td>$-$</td>
</tr>
<tr>
<td>(Theorem 10)</td>
<td></td>
<td></td>
<td>(Theorem 11)</td>
<td></td>
</tr>
<tr>
<td>Full Reconstruction</td>
<td>n</td>
<td>$O(n^c)$</td>
<td>$O\left(n^{c+1}\right)$</td>
<td>$\tilde{O}\left(n^{c+0.5}\right)$</td>
</tr>
<tr>
<td>(Theorems 2, 4, 7, 8)</td>
<td></td>
<td></td>
<td>(Theorems 3, 5, 7, 8)</td>
<td></td>
</tr>
<tr>
<td>Full Reconstruction with</td>
<td>n</td>
<td>$O(n)$</td>
<td>$O\left(n^{c+1}\right)$</td>
<td>$\tilde{O}\left(n^{(c+3)/2}\right)$</td>
</tr>
<tr>
<td>$O(n)$ reconstructed tracks</td>
<td></td>
<td></td>
<td>(Theorems 2, 4, 7, 8)</td>
<td>(Theorem 9)</td>
</tr>
</tbody>
</table>

TABLE I. Summary of the results. We present the complexity of the algorithms for each of the track reconstruction stages, both the classical and quantum versions. n is the number of charged particles present in the event record, c is the number of hits used to form the seeds, k_{seed} is the number of seeds generated, and k_{cand} is the number of built candidate tracks. The two proofs of Theorem 3 include an additional factor of $\sqrt{\ln n}$, and Theorem 8 includes the factor of $\ln n$. Note that in the quantum complexity columns, \tilde{O} indicates that the complexity is asymptotically equivalent to O.
<table>
<thead>
<tr>
<th>Tracking stages</th>
<th>Input size</th>
<th>Output size</th>
<th>Classical complexity</th>
<th>Quantum complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeding</td>
<td>$O(n)$</td>
<td>k_{seed}</td>
<td>$O(n^c)$ (Theorem 2)</td>
<td>$\tilde{O}(\sqrt{k_{\text{seed}} \cdot n^c})$ (Theorem 3)</td>
</tr>
<tr>
<td>Track Building</td>
<td>$k_{\text{seed}} + O(n)$</td>
<td>k_{cand}</td>
<td>$O(k_{\text{seed}} \cdot n)$ (Theorem 4)</td>
<td>$\tilde{O}(k_{\text{seed}} \cdot \sqrt{n})$ (Theorem 5)</td>
</tr>
<tr>
<td>Cleaning (original)</td>
<td>k_{cand}</td>
<td>$O(k_{\text{cand}}^2)$</td>
<td>$O(k_{\text{cand}}^2)$ (Theorem 6)</td>
<td>-</td>
</tr>
</tbody>
</table>

Paraphrasing the Monty Python: Every speed-up is special, every speed-up is sacred!

| Full Reconstruction | n | $O(n^c)$ | $O(n^{c+1})$ (Theorems 2, 4, 7, 8) | $\tilde{O}(n^{c+0.5})$ (Theorems 3, 5, 7, 8) |
| Full Reconstruction with | n | $O(n)$ | $O(n^{c+1})$ (Theorems 2, 4, 7, 8) | $\tilde{O}(n^{(c+3)/2})$ (Theorem 9) |

TABLE I. Summary of the results. We present the complexity of the algorithms for each of the track reconstruction stages, both the classical and quantum versions. n is the number of charged particles present in the event record, c is the number of hits used to form the seeds, k_{seed} is the number of seeds generated, and k_{cand} is the number of built candidate tracks. The two
<table>
<thead>
<tr>
<th>Tracking stages</th>
<th>Input size</th>
<th>Output size</th>
<th>Classical complexity</th>
<th>Quantum complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeding</td>
<td>$O(n)$</td>
<td>k_{seed}</td>
<td>$O(n^c)$</td>
<td>$\tilde{O}(\sqrt{k_{\text{seed}} \cdot n^c})$ (Theorem 3)</td>
</tr>
<tr>
<td>Track Building</td>
<td>$k_{\text{seed}} + O(n)$</td>
<td>k_{cand}</td>
<td>$O(k_{\text{seed}} \cdot n)$ (Theorem 4)</td>
<td>$\tilde{O}(k_{\text{seed}} \cdot \sqrt{n})$ (Theorem 5)</td>
</tr>
<tr>
<td>Cleaning (original)</td>
<td>k_{cand}</td>
<td>$O(k_{\text{cand}}^2)$</td>
<td>$O(k_{\text{cand}}^2)$</td>
<td>-</td>
</tr>
</tbody>
</table>

D. Magano, A. Kumar, M. Kālis, A. Locāns, A. Glos, S. Pratapsi, G. Quinta, M. Dimitrijevs, A. Rivošs, P. Bargassa, J. Seixas, A. Ambainis, Y. Omar

Quantum speedup for track reconstruction in particle accelerators

Physical Review D 105, 076012 (2022).

TABLE I. Summary of the results. We present the complexity of the algorithms for each of the track reconstruction stages, both the classical and quantum versions. n is the number of charged particles present in the event record, c is the number of hits used to form the seeds, k_{seed} is the number of seeds generated, and k_{cand} is the number of built candidate tracks. The two different full reconstruction columns correspond to different numbers of reconstructed tracks: $O(n)$ and $O(n^c+1)$. The classical complexities in brackets are from Theorems 2, 4, 7, 8, and the quantum complexities in brackets are from Theorems 3, 5, 7, 8, 9.
Jet Clustering

1. When a quark-antiquark pair is produced, as the distance between quarks increases, the separation energy also increases.

2. For a sufficiently large distance, the energy will be enough for a new, more favorable pair to be produced.

3. Quarks obey color-confinement → must evolve to colorless bound states – hadronisation.

4. The hadrons and subsequent final stable particles tend to travel all in the same direction, forming collimated sprays of particles - jets.
Adiabatic Quantum Algorithm for Multijet Clustering

- A novel quantum annealing binary clustering algorithm
- Outperforms the Thrust algorithm
- Can be extended to any number of jets

Figure 1: Histogram of the obtained efficiency for the proposed quantum binary clustering algorithm, ϵ_{QBC}.

Figure 2: Histogram of the obtained efficiency for the Thrust-based algorithm by Wei et al. [3], ϵ_{Thr}.

Diogo Pires, Yasser Omar, João Seixas

Adiabatic Quantum Algorithm for Multijet Clustering in High Energy Physics

A Digital Quantum Algorithm for Jet Clustering

- The first digital quantum algorithm to tackle jet clustering. Based on quantum k-means.
- Comparable, yet generally lower complexity relative to the classical state-of-the-art k_t clustering algorithm.

Figure 7. Histograms of the obtained efficiencies ε (on the left), number of found meaningful jets K (middle), and heatmap of the number of jets found by the proposed algorithm against those found by the k_t benchmark for a jet p_T cutoff of 1 GeV.

Diogo Pires, Pedram Bargassa, João Seixas, Yasser Omar

A Digital Quantum Algorithm for Jet Clustering in High-Energy Physics

Quantum algorithm for the classification of supersymmetric top quark events

Motivation: Improve approach based on zoomed Quantum Annealing (QA) for classification of stop events

- Run on Chimera graph of D-Wave
- Put QA on equal footing vs classical Machine Learning (ML) tool:
 - based on same variables to build a strong classifier R
 - prepare data w Principal Component Analysis before feeding to QA
- Explore many sets of variables & augmentation schemes

Figure of Merit including stat. & sys. uncertainties: more complete than Efficiency(S) vs Efficiency(B):

- BDT: 1.44 ± 0.06
- QA: 1.57 ± 0.24

Promising: QA performs at least as well as classical Machine Learning

Tensor Network Machine Learning: LHCb data analysis

Goal/Motivation: generalization and application of quantum-inspired tensor network algorithms to a very challenging machine-learning problem in high-energy physics: the analysis and classification of data produced by the Large Hadron Collider at CERN.

Key results:
- study of efficient protocols for encoding machine learning problems in tree tensor network (TTN) architectures;
- classification of the charge of b-quarks (i.e. b or \bar{b}) produced in proton–proton collisions at LHC with TTN algorithms;
- analysis of the performances of TTN algorithms and comparison with standard neural-network approach.

Paper reference: *npj Quantum Inf* 7, 111 (2021)
(3+1)D Quantum Electrodynamics at finite density with Tensor Networks

Goal/Motivation: generalization of sign-problem-free tensor network methods to high-dimensional lattice gauge theories (LGTs).

Key results:
- extension of high-performance tensor network algorithms to (3+1)D LGTs;
- study of the low-energy phase diagram of Quantum Electrodynamics (QED) at zero and finite charge density;
- analysis of the confinement properties of the QED model at weak and strong coupling;
- study of non-perturbative charge-screening effects.

Paper reference: Nature Communications 12, 3600 (2021)
Tensor Networks for scattering dynamics in (1+1)D QED

Goal/Motivation: development of tensor network protocols for preparing initial meson wave packets with given momentum and position, and simulation of the real-time dynamics of scattering events in lattice gauge theories.

Key results:
- analysis of efficient strategies for encoding meson wave packets on tensor network algorithms;
- simulation of the real-time dynamics of two initially separated colliding mesons in (1+1)D Quantum Electrodynamics.
- measurement of scattering amplitudes and entanglement generated by the scattering process;
- identification of two different regimes for the asymptotic entanglement.

Leptonic CP violation and neutrino entanglement

• We show how a minimization of quantum entanglement between the oscillating flavors of a neutrino leads to a unique prediction for the CP-violation phase in the neutrino sector without assuming extra symmetries in the Standard Model.

Gonçalo M. Quinta, Alexandre Sousa, Yasser Omar

Predicting leptonic CP violation via minimization of neutrino entanglement
arXiv:2207.03303 (2022)
Welcome to the QuantHEP project website

QuantHEP – Quantum Computing Solutions for High-Energy Physics is a research project whose key goal is to develop quantum algorithms as a solution to the increasingly challenging, and soon intractable, problem of analysing and simulating events from large particle-physic...
QuantHEP Conference 2023
12-14 June 2023, in Bari, Italy

A regular conference for the QT and HEP communities to meet, discuss the latest results and future directions, as well as get training in QT & HEP.
Physics of Information & Quantum Technologies Group

We gratefully acknowledge the support from:
We currently have 3 new Post-doc positions and 3 new PhD Student positions available.

Apply now:

www.phys-info.org
Quantum Computing Solutions for High-Energy Physics

Yasser Omar
contact.yasser@pq.png

PQI – Portuguese Quantum Institute
Instituto Superior Técnico, Universidade de Lisboa
Physics of Information and Quantum Technologies Group, CeFEMA,
• 200+ events covering Africa, the Americas, Asia, and Europe!
• Launched Quantum@School and Quantum@Museum projects.
• Join QuCATS in celebrating the World Quantum Day in 2023!
• 14 April: European Quantum Day?

Events celebrating quantum science and technology

• 200+ events
• 44+ countries
• 193+ cities
• 17+ languages

Tweet impressions > 43k
Weibo likes > 10M

worldquantumday.org @WorldQuantumDay