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The standard argument for quantum computing is that it 
outperforms a classical computer exponentially

C
om

pu
tin

g 
Po

w
er

Year

Classical computer

Quantum computer



Christian Bauer
Quantum Computing in the Physics Division

But quantum computers can not solve any problem 
exponentially faster than a classical computer

BQP
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Need HEP problems for which a quantum computer 
outperforms a classical computer

BQP
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High Energy Physics aims to unravel the secrets of the 
most fundamental interactions

From Quora post
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All known interactions of fundamental particles are 
described by the Standard Model of Particle Physics

Walter Murch,
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We know that our current theory of nature is incomplete, 
since it doesn’t describe observed effects
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The important message is that there are transformational 
problems in HEP for which QC outperforms CC
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These problems exist in many areas of HEP
collider physics, neutrino physics, cosmology, 
early universe physics, quantum gravity etc

One important example:
First principles (non-perturbative) simulation of

dynamics of QFTs, in particular SU(3)

For recent review, see CWB, Z Davoudi et al, 
Quantum Simulation for HEP (2204.03381)
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Quantum 
Simulations 
Research

Obtain results on 
realistic machines 

(with noise)

Find appropriate 
Theory 

Formulation

Find efficient 
Quantum 

algorithms

Identify the right 
questions to 

address
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Since quantum computers are typically behind classical 
computers in size, should find optimal problems

Energy rage that can be 
described by lattice is given by

1
Nl

≲ E ≲
1
l

Size of system scales as ∼ (Elow/Ehigh)
3

Should attempt to use Quantum computer to only address those questions that 
are impossible using classical computers (non-perturbative)

Effective Theories are the proven tool to isolate certain energy ranges of a 
problem
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Effective theories allow to separate short and long 
distance physics from one another

Relevant Effective Theory is Soft-Collinear EFT (SCET)

dσ = H ⊗ J1 ⊗ … ⊗ Jn ⊗ S

Most interesting object in above equation is the soft function , which 
lives at the lowest energies

S

One of the holy grails is to determine dynamical properties in scattering 
processes

Soft function “knows” about energetic particles only through the 
directions they travel in (with essentially the speed of light) 

In field theory, this is described by Wilson lines along light-like paths

Big problem for making predictions: Soft function is non-perturbative 
object, no known way to compute it
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Effective theories allow to separate short and long 
distance physics from one another

dσ = H ⊗ J1 ⊗ … ⊗ Jn ⊗ S

4

To implement the Wilson line operator we first rewrite
the time-ordered product of the two Wilson lines as

T[Yn Y
†
n̄ ] = e

�iH n0�x exp
⇥
ig �x

�
�x2n0

� �x0

�⇤
(13)

⇥ e
iH�x exp

⇥
ig �x

�
�x2n0�1 � �x1

�⇤

⇥ · · ·⇥ e
iH�x exp

⇥
ig �x

�
�xn0

� �xn0

�⇤
,

where we have used the time translation operator to
make the time dependence on the field operators explicit.
Thus, the Wilson line operator consists of a sequence of
time-evolution operators for a time interval correspond-
ing to the lattice spacing and exponentials of the field
operator. The last time evolution evolves the state back
from the largest time to which the Wilson lines can be
sensibly evolved, namely tmax = n0 �x, to t = 0 at which
all states are defined.

Ultimately, to make contact with the continuum field
theory any such simulation will have to be performed on
a series of increasing lattices, and the result extrapolated
to the N ! 1, �x ! 0 limit. Any parameters of the the-
ory present in the continuum must be suitably matched
for this procedure to yield meaningful results. For lo-
cal terms in the Hamiltonian, this procedure is discussed
in detail in [5]. Dealing with a massless theory simpli-
fies this procedure since only local interactions (of which
in the present case there are none) need to be matched.
However, the EFT will also require the matching of Wil-
son line operators, which is complicated by their non-
local nature and sensitivity to total lattice size, as dis-
cussed in the Supplemental Materials. In this letter, we
work at fixed lattice size and we leave the detailed inves-
tigation of these issues to future work.

The implementation of the exponential of the field op-
erator, as well as the time evolution operator, follows
the discussion in [8] and uses the fact that the digitized

field �
(k)
i

can be written in terms of sums of �z opera-
tors. This implies that the exponential of products of
fields �i can be implemented through combinations of
CNOT gates and RZ rotations [6–8]. The exponential of
the conjugate operator �̇

2 can be implemented by tak-
ing a quantum Fourier transformation of the exponential
of the operator �

2. These can then be combined via
the Suzuki–Trotter formula [49–51]. For details, see the
Supplemental Materials. The initial ground state of the
scalar field theory is a multi-variate Gaussian distribu-
tion, which can be created using the approach of Kitaev
and Webb (KW) [52]. To identify states of definite multi-
plicity and momentum in |Xi one can follow the general
ideas laid out in [1, 5].

Our quantum circuit has been implemented in
Qiskit [53] and is available from the authors upon re-
quest. In this first exploratory paper we compute the
foundational quantities, namely

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2

(14)

for |Xi = |⌦i and |Xi = |pii, the one-particle momentum
eigenstates of the theory. It should be noted that these
quantities are not infrared (IR) safe, and will therefore
depend on the IR scale in the problem, the lattice size L.
However, as discussed in more detail in the Supplemental
Materials, there is no non-trivial IR safe observable that
can be defined in (1+1) dimensions, and these transition
rates are therefore representative quantities of what can
be computed in this theory.

The quantum circuit for this measurement can be rep-
resented as

|l0i /

U⌦ UY U
†
X

|. . .i /

|lN�1i /

where |lni denotes the register of qubits for the n
th lat-

tice site. This creates the multivariate Gaussian vacuum
state from the initial state with all qubits zero using U⌦,
acts on this vacuum with the time ordered product of
the two Wilson lines using UY , and finally applies the in-
verse of the state preparation of state |Xi. The details of
these various circuits can be found in the Supplementary
Material.
For our numerical results, we work with an N = 3 site

lattice with spacing �x = 1. With only 3 lattice sites, the
Wilson line operator simplifies to

YX =
���hX|T[Yn Y

†
n̄ ]|⌦i

���
2
=

���hX|e
ig�x(�x2��x0)|⌦i

���
2
,

(15)

since all time evolution operators act on the initial or fi-
nal eigenstate of the Hamiltonian only and can therefore
be neglected as contributing an overall phase. In Fig. 1
we show the dependence of the expectation values YX

on the coupling g for nQ = 2 qubits per lattice site for
di↵erent final states, and compare them against the ana-
lytical results, shown by black lines. Results are given for
both a quantum simulation and from the 65-qubit IMBQ
Manhattan quantum computer. The operators for imple-
menting all states are exact, as the resources for doing so
on a small lattice are modest. On a larger lattice approx-
imate methods, such as KW ground state approximation
and the excited state preparation techniques of [5] will be
necessary; the e↵ect of such approximations is presented
in the Supplementary Material.
Errors in the quantum circuits, especially readout er-

rors and CNOT gate errors are quite large on existing
hardware. As discussed in the Supplemental Materials,
the exponential of the field operator at a given position
requires only nQ single qubit gates, such that the opera-
tor in Eq. (15) requires no CNOT gates. For nQ = 2, he
state preparation requires 6 CNOT gates for gates. Note
that for more than 3 lattice sites the time evolution op-
erator is required, which requires a much larger amount

Big problem for making predictions: Soft function is non-perturbative 
object, no known way to compute it

Can Quantum Computers perform first principles calculation of soft 
function?

CWB, Freytsis, Nachman, 
PRL 127 (2021), 212001
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Effective theories allow to separate short and long 
distance physics from one another

dσ = H ⊗ J1 ⊗ … ⊗ Jn ⊗ S

CWB, Freytsis, Nachman, 
PRL 127 (2021), 212001

Big problem for making predictions: Soft function is non-perturbative 
object, no known way to compute it

Can Quantum Computers perform first principles calculation of soft 
function?
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There are many theoretical issues one needs to deal with 
when implementing field theories

• Turn infinite dimensional Hilbert space into finite dimensional

• Find optimal ways to protect or utilize underlying symmetries 

• Understand systematic uncertainties given truncations used

H = ∫ddx [E2(x) + B2(x)]

⃗B (x) = ⃗∇ × ⃗A (x) ⃗E (x) = − ∂ ⃗A (x)/∂t

E and B have simple relations to the gauge field (working in  gauge)A0 = 0

Give one example using U(1) gauge theory
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One can write Lattice version of Hamiltonian entirely in 
terms of rotors and magnetic fields

H = ∑
p∈plaq

[g2HE[Ri] +
1
g2

HM[Bi]]

Since ,  and  can not be diagonalized simultaneously[HE, HM] ≠ 0 HE HB

Considerable interest in “compact” U(1) gauge theory, where −π < Bi < π

In limit  useful to work in electric basis, where  is diagonalg → ∞ HE

In limit  useful to work in magnetic basis, where  is diagonalg → 0 HB
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Electric basis is easy to work with, and was basis in 
original work by Kogut and Susskind

Electric Hamiltonian = kinetic energy in system with symmetry of gauge group

Eigenvalues/functions indexed by irreducible representations of gauge group

U(1) SU(2) SU(3)

1

1

2

1 1

10 15

6 8 6

3 3

15 10

Magnetic Hamiltonian gives transitions between representations

1

1

3

4

Infinite number of representations (continuous gauge field), need to truncate
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Electric basis is easy to work with, and was basis in 
original work by Kogut and Susskind

U(1) SU(2) SU(3)

1

1

2

1 1

10 15

6 8 6

3 3

15 10

1

1

3

4

At large coupling, electric Hamiltonian dominates, states in lowest lying 
representations

Can just keep the lowest few representations 
(giving rise to Kogut-Susskind basis)
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Electric basis is easy to work with, and was basis in 
original work by Kogut and Susskind

U(1) SU(2) SU(3)

1

1

2

1 1

10 15

6 8 6

3 3

15 10
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At small coupling, magnetic Hamiltonian dominates, lowest lying states require 
many representations

Kogut Susskind basis extremely inefficient
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At small coupling, better to work directly in magnetic basis 3

0�bmax bmax

±�

Previous work

B field over range |b|  �
Wave function support |b|  bmax

Large number of digitized
points needed to sample

wave function adequately

This work

B field defined only over
suport of wave function

Number of digitized points
equal to numer of points used

to sample wave function

0

±bmax

FIG. 1: Illustration of our representation of the magnetic
field (right) compared to previous work (left).

Note that for general bmax the spacing of the rotor fields �r
is no longer equal to 1, unlike in the compact undigitized
lattice theory. This deviation away from �r = 1 is key
to having an e�cient and accurate representation. As
we will discuss below, in the limit ` ! 1 we recover the
usual relation �b = 2⇡/(2`+ 1) such that �r = 1.

Two key points need to be addressed. The first is deter-
mining the representation of the electric Hamiltonian in
the magnetic basis, and the second is choosing a value for
bmax. Multiple representations of the electric Hamiltonian
in the magnetic basis are possible, such as using a finite
di↵erence representation of the relation R = �i@b, or the
representation in [21], which we review in the Supple-
mental Material. We choose, however, to follow [53] and
represent the electric Hamiltonian by its exact eigenvalues
through a Fourier transform

|r(k)p i = 1p
2`+ 1

2X̀

k0=0

e
i 2⇡
2`+1 (k�`)(k0�`� 1

2 )|b(k
0)

p i

⌘
2X̀

k0=0

(FT)kk0 |b(k
0)

p i . (10)

This allows to write

hb(k)p |Rp|b(k
0)

p0 i =
2X̀

n=0

r
(n)
p (FT)�1

kn (FT)nk0 �pp0 . (11)

To choose the optimal value of bmax we demand that the
optimal digitization for the quantum harmonic oscillator
violates the canonical commutation relation minimally [54,
55] (suppressed exponentially in the dimension of the
Hilbert space). To find the optimal value of bmax for
both the non-compact and compact theory,1 we define

1 While the compact and non-compact theory are di↵erent, we
show in the Supplemental material that this condition works for
a weakly-coupled compact version of the harmonic oscillator.

the ‘canonical commutator expectation value’

D
C

(`)
p

E
[bmax] ⌘ 1 + ih⌦(`)| [Bp, Rp] |⌦(`)i , (12)

where the ground state and the spectrum of the operators
also depend on the value of bmax, g and `. The value of

bmax is now defined by minimizing hC(`)
p i[bmax],

b
(p)
max(g, `) = argmin

h
hC(`)

p i[bmax]
i
, (13)

and we indicated the dependence of bmax on the values
of g and `. Note that in general the condition in (13)
gives a di↵erent value of bmax for each plaquette. However
these di↵erences are quite small and our final analytic
expression uses a universal bmax.
For a quantum harmonic oscillator (QHO), the condi-

tion that the canonical commutation relation be minimally
violated has been previously used to derive analytically the
optimal value of bmax(`) =

p
(2`+ 1)⇡/2 [54, 55]. The

non-compact U(1) Hamiltonian is a three-dimensional
QHO which can be reduced to three one-dimensional
QHOs by neglecting terms that couple di↵erent lattice
sites together. The optimal value of bmax for these one-
dimensional QHOs is

b
NC
max(g, `) = g

s
(2`+ 1)⇡p

2
. (14)

For the compact theory, one needs to include the finite
maximum range of the magnetic field to give

b
C
max(g, `) = min

⇥
b
NC
max,⇡

⇤
. (15)

At su�ciently large values of `, bCmax will always be equal
to ⇡ and therefore �r = 1. With this final step, we now
have a fully defined representation of a 2 + 1 dimensional
U(1) lattice gauge theory that is valid at all values of the
coupling.
We conclude this letter by presenting two numerical

tests of this formulation. We focus on the smallest possi-
ble system in 2 + 1 dimensions, namely four lattice sites
and periodic identification of the boundaries. Imposing
Gauss’s law and constraining to the trivial topological
sector, the degrees of freedom are three rotors and three
plaquettes. This system was previously derived and stud-
ied in [21] for the compact gauge group.
The Hilbert space of this system is spanned by three

magnetic fields, which we choose to denote as |b(k)i =

|b(k1)
1 b

(k2)
2 b

(k3)
3 i, where k is the vector of state labels for

the magnetic operators. The magnetic Hamiltonian for
the compact theory is diagonal with

hb(k)|HC
B |b(k

0)i (16)

=
1

a

1

g2

 
4 �

3X

p=1

cos b(kp)
p � cos

"
3X

p=1

b
(kp)
p

#!
�kk0 ,

CWB, Grabowska, 2111.08015

• In U(1) theory, representations 
are 1-dimensional, labeled by 
index k

• Correspond to the modes of a 
periodic field

• Keeping only representations up 
to maximum k amounts turns 
continuous U(1) group in to 
discrete  group

• Amounts to discrete sampling of 
gauge potential

Zkmax
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mining the representation of the electric Hamiltonian in
the magnetic basis, and the second is choosing a value for
bmax. Multiple representations of the electric Hamiltonian
in the magnetic basis are possible, such as using a finite
di↵erence representation of the relation R = �i@b, or the
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To choose the optimal value of bmax we demand that the
optimal digitization for the quantum harmonic oscillator
violates the canonical commutation relation minimally [54,
55] (suppressed exponentially in the dimension of the
Hilbert space). To find the optimal value of bmax for
both the non-compact and compact theory,1 we define

1 While the compact and non-compact theory are di↵erent, we
show in the Supplemental material that this condition works for
a weakly-coupled compact version of the harmonic oscillator.
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At su�ciently large values of `, bCmax will always be equal
to ⇡ and therefore �r = 1. With this final step, we now
have a fully defined representation of a 2 + 1 dimensional
U(1) lattice gauge theory that is valid at all values of the
coupling.
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tests of this formulation. We focus on the smallest possi-
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in the magnetic basis are possible, such as using a finite
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To choose the optimal value of bmax we demand that the
optimal digitization for the quantum harmonic oscillator
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55] (suppressed exponentially in the dimension of the
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1 While the compact and non-compact theory are di↵erent, we
show in the Supplemental material that this condition works for
a weakly-coupled compact version of the harmonic oscillator.

the ‘canonical commutator expectation value’

D
C

(`)
p

E
[bmax] ⌘ 1 + ih⌦(`)| [Bp, Rp] |⌦(`)i , (12)

where the ground state and the spectrum of the operators
also depend on the value of bmax, g and `. The value of

bmax is now defined by minimizing hC(`)
p i[bmax],

b
(p)
max(g, `) = argmin

h
hC(`)

p i[bmax]
i
, (13)

and we indicated the dependence of bmax on the values
of g and `. Note that in general the condition in (13)
gives a di↵erent value of bmax for each plaquette. However
these di↵erences are quite small and our final analytic
expression uses a universal bmax.
For a quantum harmonic oscillator (QHO), the condi-

tion that the canonical commutation relation be minimally
violated has been previously used to derive analytically the
optimal value of bmax(`) =

p
(2`+ 1)⇡/2 [54, 55]. The

non-compact U(1) Hamiltonian is a three-dimensional
QHO which can be reduced to three one-dimensional
QHOs by neglecting terms that couple di↵erent lattice
sites together. The optimal value of bmax for these one-
dimensional QHOs is

b
NC
max(g, `) = g

s
(2`+ 1)⇡p

2
. (14)

For the compact theory, one needs to include the finite
maximum range of the magnetic field to give

b
C
max(g, `) = min

⇥
b
NC
max,⇡

⇤
. (15)

At su�ciently large values of `, bCmax will always be equal
to ⇡ and therefore �r = 1. With this final step, we now
have a fully defined representation of a 2 + 1 dimensional
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We developed a new representation of Hilbert space, that 
works in both limits of the coupling

CWB, Grabowska, 2111.08015
4

FIG. 2: Dependence of the non-compact theory on the
value of bmax for two values of ` = 4. The dashed and
dotted lines show the commutator expectation value for
the first and second/third lattice plaquette. In the solid
lines we show the results for energy di↵erence compared
to the analytical result. All curves are minimized for
values of bmax ⇡ b

NC
max.

while for the non-compact theory one replaces each cos(b)
by 1� b

2
/2. The matrix elements of the electric Hamilto-

nian are given by

hb(k)|HE |b(k
0)i = �2g2

a

2X̀

ni=0

(FT)�1
kn (FT)nk0

⇥
 
r
(n1)
1

⇣
r
(n2)
2 + r

(n3)
3

⌘
�

3X

p=1

⇣
r
(np)
p

⌘2
!

, (17)

where we have used the notation (FT)kk0 =
Q

i (FT)kik0
i
.

In Fig. 2 we show the dependence of the theory on the
value of bmax for the non-compact theory with ` = 4. The
values of the hCpi[bmax] are shown by the dashed and
dotted lines. The solid lines show the di↵erence of the
energies of the first three eigenstates of the Hamiltonian
when compared to the exact value in the continuum limit.
One can see that all curves have a minimum at very similar
locations, and that these minima are very close to the
analytical value b

C
max given in (15). The method to solve

the non-digitized theory is presented in the Supplemental
Materials.
As a second result, we present the expectation of the

plaquette operator

h⇤i = �g
2
a
2

V
h 0|HB | 0i , (18)

where | 0i is the ground state of the theory and V is
the number of plaquettes in the system. This matrix
element has been considered in the past [56], and allows
for comparisons to [21]. The result is shown in Fig. 3,
where the solid lines correspond to the result of this work,
while the dashed lines with circles and dotted lines with
crosses correspond to the results of [21] in the magnetic
and electric basis, respectively. We can see that our results
have very good convergence over the entire range of the
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FIG. 3: Expectation value of the plaquette operator for
` = 2 (red), ` = 3 (green), ` = 4 (blue). The solid lines
show the results of this work, while the dashed lines
(circles) and dotted lines (crosses) denote the results
of [21] in the magnetic and electric basis, respectively.
The ratios to the result of our work with ` = 6 are shown
below, while the bottom plot shows the analytical
solution of the non-compact theory, which should give
the correct result at low values of g.

coupling constant, and already with ` = 3 we have per-
mille level accuracy for all values of g. As discussed before,
the magnetic (electric) basis of [21] only works at small
(large) couplings, and one can see that at small coupling
the magnetic basis is only able to reach percent-level
accuracy, even for larger `.

In this letter we presented a novel formulation of (2+1)-
dimensional U(1) lattice gauge theories. This formulation
is able to reproduce the low-lying spectrum of the theory
for all values of the coupling with per-mille or better
accuracy while utilizing minimal resources. It digitizes a
Hamiltonian that only contains physical states, utilizing
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FIG. 1: Illustration of our representation of the magnetic
field (right) compared to previous work (left).

Note that for general bmax the spacing of the rotor fields �r
is no longer equal to 1, unlike in the compact undigitized
lattice theory. This deviation away from �r = 1 is key
to having an e�cient and accurate representation. As
we will discuss below, in the limit ` ! 1 we recover the
usual relation �b = 2⇡/(2`+ 1) such that �r = 1.

Two key points need to be addressed. The first is deter-
mining the representation of the electric Hamiltonian in
the magnetic basis, and the second is choosing a value for
bmax. Multiple representations of the electric Hamiltonian
in the magnetic basis are possible, such as using a finite
di↵erence representation of the relation R = �i@b, or the
representation in [21], which we review in the Supple-
mental Material. We choose, however, to follow [53] and
represent the electric Hamiltonian by its exact eigenvalues
through a Fourier transform

|r(k)p i = 1p
2`+ 1

2X̀

k0=0

e
i 2⇡
2`+1 (k�`)(k0�`� 1

2 )|b(k
0)
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⌘
2X̀
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(FT)kk0 |b(k
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p i . (10)

This allows to write

hb(k)p |Rp|b(k
0)

p0 i =
2X̀

n=0

r
(n)
p (FT)�1

kn (FT)nk0 �pp0 . (11)

To choose the optimal value of bmax we demand that the
optimal digitization for the quantum harmonic oscillator
violates the canonical commutation relation minimally [54,
55] (suppressed exponentially in the dimension of the
Hilbert space). To find the optimal value of bmax for
both the non-compact and compact theory,1 we define

1 While the compact and non-compact theory are di↵erent, we
show in the Supplemental material that this condition works for
a weakly-coupled compact version of the harmonic oscillator.

the ‘canonical commutator expectation value’

D
C

(`)
p

E
[bmax] ⌘ 1 + ih⌦(`)| [Bp, Rp] |⌦(`)i , (12)

where the ground state and the spectrum of the operators
also depend on the value of bmax, g and `. The value of

bmax is now defined by minimizing hC(`)
p i[bmax],

b
(p)
max(g, `) = argmin

h
hC(`)

p i[bmax]
i
, (13)

and we indicated the dependence of bmax on the values
of g and `. Note that in general the condition in (13)
gives a di↵erent value of bmax for each plaquette. However
these di↵erences are quite small and our final analytic
expression uses a universal bmax.
For a quantum harmonic oscillator (QHO), the condi-

tion that the canonical commutation relation be minimally
violated has been previously used to derive analytically the
optimal value of bmax(`) =

p
(2`+ 1)⇡/2 [54, 55]. The

non-compact U(1) Hamiltonian is a three-dimensional
QHO which can be reduced to three one-dimensional
QHOs by neglecting terms that couple di↵erent lattice
sites together. The optimal value of bmax for these one-
dimensional QHOs is

b
NC
max(g, `) = g

s
(2`+ 1)⇡p

2
. (14)

For the compact theory, one needs to include the finite
maximum range of the magnetic field to give

b
C
max(g, `) = min

⇥
b
NC
max,⇡

⇤
. (15)

At su�ciently large values of `, bCmax will always be equal
to ⇡ and therefore �r = 1. With this final step, we now
have a fully defined representation of a 2 + 1 dimensional
U(1) lattice gauge theory that is valid at all values of the
coupling.
We conclude this letter by presenting two numerical

tests of this formulation. We focus on the smallest possi-
ble system in 2 + 1 dimensions, namely four lattice sites
and periodic identification of the boundaries. Imposing
Gauss’s law and constraining to the trivial topological
sector, the degrees of freedom are three rotors and three
plaquettes. This system was previously derived and stud-
ied in [21] for the compact gauge group.
The Hilbert space of this system is spanned by three

magnetic fields, which we choose to denote as |b(k)i =

|b(k1)
1 b

(k2)
2 b

(k3)
3 i, where k is the vector of state labels for

the magnetic operators. The magnetic Hamiltonian for
the compact theory is diagonal with

hb(k)|HC
B |b(k

0)i (16)
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to having an e�cient and accurate representation. As
we will discuss below, in the limit ` ! 1 we recover the
usual relation �b = 2⇡/(2`+ 1) such that �r = 1.

Two key points need to be addressed. The first is deter-
mining the representation of the electric Hamiltonian in
the magnetic basis, and the second is choosing a value for
bmax. Multiple representations of the electric Hamiltonian
in the magnetic basis are possible, such as using a finite
di↵erence representation of the relation R = �i@b, or the
representation in [21], which we review in the Supple-
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represent the electric Hamiltonian by its exact eigenvalues
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55] (suppressed exponentially in the dimension of the
Hilbert space). To find the optimal value of bmax for
both the non-compact and compact theory,1 we define
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show in the Supplemental material that this condition works for
a weakly-coupled compact version of the harmonic oscillator.
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to ⇡ and therefore �r = 1. With this final step, we now
have a fully defined representation of a 2 + 1 dimensional
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FIG. 1: Dynamic computing workflow. The essential procedure consists of four steps: (1) Measure a subset of
quantum resources in the QPU, represented here by the k-qubit register, (2) On the CPU perform some processing on
the measured data, (3) Reset the measured qubits to the |0i state so they can be re-used, and (4) Based on CPU

outputs, apply additional quantum operations on the QPU. Note that the QPU must maintain coherence throughout
this procedure.

In classical PSs, the rates of these processes are de-
scribed by splitting functions:

Pi!j�(✓) = g2ijPf (✓) , i, j 2 {1, 2} (2)

P�!ij̄(✓) = g2ijP̂�(✓) , i, j 2 {1, 2} , (3)

where gi ⌘ gii. The splitting functions describe the
probability for a particular particle at a given step (pa-
rameterized by the scale ✓) in the parton shower evolution
to undergo a transformation. There are many formally
equivalent definitions of the scale; here we use a common
choice of the opening angle of the emission with respect
to the emitter (angularly ordered shower).

In addition to the splitting functions, another important
quantity is the no-branching probability (Sudakov factor):

�i,k(✓1, ✓2) = exp

"
�g2i

Z ✓2

✓1

d✓0P̂k(✓
0)

#
, (4)

which describes the probability that no emission occurs
between scales ✓1 and ✓2. With the splitting functions and
Sudakov factors, we can sample from the cross-section
using a Markov Chain algorithm that generates one emis-
sion at a time, conditioned on the previous emissions. In
particular, at a given step in the algorithm with a fixed
number of particles, the probability that none of them
radiate or split is simply a product over Sudakov factors.
If something does happen at a given step, the probabilities
are proportional to the appropriate splitting function. In
the limit g12 ! 0, the Markov Chain algorithm can be
implemented in terms of emission probabilities, and is
therefore classically e�cient. However, if g12 > 0, there
are now multiple histories with unmeasured intermediate
fermion types which contribute to the same final state.
To account for these interferences, we must implement
the Markov Chain on at the quantum amplitude level,
which necessitates keeping track of O(2N ) di↵erent his-
tories, where the range of opening angles is discretized
into N parts. This motivates the QPS algorithm, which
computes the final state radiation with g12 > 0 using only
polynomially many qubits and gates on a digital quantum
computer.

B. Basis for the Quantum Algorithm

The interaction terms (Eq. (1)) of the Lagrangian can
be written as a matrix equation:

Linteraction =
�
f̄1 f̄2

�✓ g1 g12
g12 g2

◆✓
f1
f2

◆
� . (5)

Furthermore, the “interaction matrix” is real and sym-
metric, and can thus be diagonalized as

G ⌘
✓
g1 g12
g12 g2

◆
= U†

✓
ga 0
0 gb

◆
U . (6)

By defining a change of basis
✓
fa
fb

◆
⌘ U

✓
f1
f2

◆
, (7)

the interactions (Eq. (1)) become diagonal:

Linteraction =
�
f̄a f̄b

�✓ga 0
0 gb

◆✓
fa
fb

◆
� . (8)

In this “diagonal basis”, splitting do not create inter-
ference between fermion types. In other words,

Pi!j�(✓) = �ijg
2
ijPf (✓) , i, j 2 {a, b} (9)

P�!ij̄(✓) = �ijg
2
ijP�(✓) , i, j 2 {a, b} , (10)

where �ij is Kronecker delta. This is also the case in the
original basis if g12 = 0.
Therefore, to simulate interference between fermion

types, we first rotate particle registers |pi encoding
fermion/boson fields into the diagonal basis according to
Eq. (7), proceed with a quantum analogue of the classical
Markov Chain algorithm (generating a history of angles
and particle types), and lastly rotate the final particle
states back to the original basis. If g12 > 0, then the ini-
tial rotation to the diagonal basis creates a superposition
of fa and fa fermions. Subsequent operations act on this
superposition, and all intermediate amplitudes/histories
are preserved throughout the quantum Markov Chain.
This contrasts the classical MCMC parton shower, where
there superpositions of multiple fermion types are not
included. Note that in this model, there is no interference
between histories where emissions occurred at di↵erent
angles.
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Note that the particle state only calls for 2(N + nI)
qubits, compared to 3(N + nI) originally (Table. I). By
only encoding fermions in quantum registers, two qubits
are su�cient to encode fa, fb, f̄a, f̄b. Also note that
the number of required qubits varies between di↵erent
circuit executions, as a simulation where more fermions
are produced requires more quantum resources. In the
worst case, |pi will still consist of N + nI sub-registers,
while the actual number is nf . Depending on parameters
g1, g2, g12, ✏, and the splitting functions Pi!j�, P�!ij ,
the expectation for hnf i may be significantly smaller
than N + nI . Therefore, the maximum number of qubits
required for an N -step simulation is

#Qubitsmax =

2(nI +N) + 4dlog2(nI +N)e+ 2 ,
(13)

while the actual number is

#Qubitsactual =

2
h
nf + dlog2(nI +N)e+ dlog2(nf )e+ 1

i
,

(14)

where the latter could be used if a variable number
of qubits can be used for the circuit execution. The
asymptotic qubit scaling is just O(N + nI), compared to
O(N log2(N + nI)) for the original QPS algorithm (Ta-
ble I). This original qubit scaling is from storing the emis-
sion history at each step, which means using N subregis-
ters |him each with dlog2(nI +m+1)e ⇠ O(log2(N +nI))
qubits. By measuring, resetting, and re-using |hi after
each step, |hi just consists of dlog2(N + nI + 1)e qubits,
and the dominant scaling becomes the O(N + nI) qubits
of |pi. The qubit scaling di↵erence is illustrated in Fig. 4,
which plots qubit count against N , with one starting
particle, nI = 1.

2. Gate Costs

We measure gate costs by writing operations in terms
of the universal standard gate set consisting of two-qubit
controleld not gates (CNOTs) and arbitary single qubit
gates U(✓,�,�). Multi-controlled gates are decomposed
into sequences of To↵oli (CCX) gates using a standard
procedure that requires ancillary qubits equal to the num-
ber of controls minus one [8]. Then, To↵oli gates are
decomposed into six two-qubit entangling gates [8]. As
two-qubit entangling gates are far costlier to implement in
real devices than single qubit gates, we quote gate counts
in terms of CNOTs. Note that while we illustrate “classi-
cal controls” in our circuit diagrams (Fig. 14, Fig. 13) for
quantum gates selected dynamically by the CPU, only the
attached quantum gates are included in the gate count.

Table III summarizes the gate costs of each component
of the improved QPS algorithm. The overall asymptotic
scaling is

O(N · (N + nI)
2 · log2(N + nI)

2) , (15)

FIG. 4: Qubit cost comparison between the original QPS
and the improved version with mid-circuit measurements.
This plot is simply an illustration of Eq. (13) and the
sum over Table I with nI = 1. For nI > 1, the qubit
count curves simply shift to the left, as nI and N only

appear together in the qubit scaling, as N + nI .

Element Step m cost Total Scaling (N steps)

R 2(nI +m) O(N2 +NnI)
Ucount 13`(nI +m) O(N(N + nI) · log2(nI +N))
Ue (nI +m)(12`� 10) O(N(N + nI) · log2(nI +N))
Uh O(N(N + nI)

2
· log2(nI +N)2)

Up 2 2N

Total O(N(N + nI)
2
· log2(nI +N)2)

TABLE III: Gate costs of the di↵erent circuit elements
using re-measurement. ` ⌘ dlog2(nI +m+ 1)e

.

which is a factor of (N + nI)2 more e�cient than the
original QPS gate scaling:

O(N · (N + nI)
4 · log2(N + nI)

2) . (16)

This scaling improvement is due to the fact that at step
m, |nai is a superposition of nI +m possible basis states,
while |nai |nbi |n�i is a superposition of (nI+m)3 possible
basis states. To implement Uh (see App. A), rotation
gates controlled on |nai is applied to |hi for each possible
value stored in |nai. Therefore, in the original algorithm,
Uh consisted of O((m+ nI)3) controlled-rotations, while
in the improved algorithm, only O(m + nI) controlled
rotations are applied.

Fig. 5 compares the actual gate counts of our improved
QPS circuits with those of the original QPS circuits. The
dashed line is the contribution from just the Uh gate, and
Fig. 5 illustrates that the gate cost of Uh is dominant.
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FIG. 5: Gate cost comparison: The dashed line
represents the dominant contribution from Uh to the

total gate count for QPS with mid-circuit measurements.

IV. NUMERICAL RESULTS

Using Qiskit’s matrix product state simulator [28, 29],
we are able to simulate QPS with one initial particle
(nI = 1) up to several steps. For each simulation, we use
a scale parameter ✓ = ✓m, defined by

✓m ⌘ ✏m/N , ✏ = 0.001 , (17)

splitting functions

Pi!i�(✓) = g2i P̂f (✓) =
g2i log(✓)

4⇡
(18)

P�!īi(✓) = g2i P̂�(✓) =
g2i log(✓)

4⇡
, (19)

couplings

g1 = 2 g2 = 1 g12 = 1 , (20)

and one initial f1 (see Eq. (A2)),

|piinitial = |p1i = |100i . (21)

The couplings g1 = 2, g2 = 1, g12 = 1 are arbitrary,
but chosen such that ga, gb 6= 0 and ga 6= gb (Eq. (6)),
in order to capture the full problem complexity. For
simplicity, the couplings are also kept independent of step
for simplicity (in reality, they would run with the scale).
This means that the rotations are the same at each step.
The numerical values of the diagonalized couplings are

ga =
3 +

p
5

2
⇡ 2.618 (22)

gb =
3�

p
5

2
⇡ 0.382 , (23)

and the rotation angle u is

u =

p
5� 1

2
p
5

⇡ 0.28 rad . (24)

With these parameters, the Sudakov factors, which give
probabilities to have no emission from a given particle at
step m, can be written as

�a(✓m) = ✏g
2
a/4⇡N (25)

�b(✓m) = ✏g
2
b/4⇡N (26)

��(✓m) = ✏(g
2
a+g2

b )/4⇡N . (27)

Because the couplings are kept constant, these probabili-
ties also remain constant at each step.

We run simulations with g12 = 0 in addition to g12 = 1.
As explained in Sec. III A, when g12 = 0 the parton shower
can be solved using a classical Markov Chain algorithm.
Therefore, as a sanity check, we overlay analytical Markov
Chain calculations, each with 109 shots, over simulation
results with g12 = 0 in our plots.
Figures 6 and 7 present simulation results for N =

2, 3, 4, 5 steps and compare the outputs between the orig-
inal QPS and QPS with mid-circuit measurements3. We
have chosen two di↵erent observables for illustration.
First, Fig. 6 shows histograms of the total number of

emissions (E). The main subplot illustrates the prob-
ability distributions of E for classical MCMC (black),
original QPS (filled bars), and QPS with mid-circuit mea-
surements (solid edges) simulations, with both g12 = 0
(blue) and g12 = 1 (red). The second subplot magnifies
di↵erences between the MCMC and g12 = 0 simulation
distributions, which are due to statistical noise and exhib-
ited the expected deviations. The third subplot magnifies
di↵erences between distributions obtained from original
QPS and QPS with mid-circuit measurements, which are
also within the expected statistical variations. With 105

shots per simulation, typical statistical errors are on the

order of � ⇠
q

Pr(E)
105 .

q
1

105 ⇡ 0.0032. Error bars shown

in the second and third subplots Fig. 6 are 1� ranges for
the di↵erence distributions, and the simulation results
exhibit deviations on the expected scale. In other words,
the second subplot shows that quantum simulations with
coupling turned o↵ (g12 = 0) agree with the classical
MCMC algorithm, as expected. Additionally, the two
di↵erent versions of the quantum algorithm – original

3 We have stopped at 5 steps due to the simulation time. The
present criteria for determining how many steps to use is that
simulations with 105 shots have to take fewer than 3 hours running
naively without any parallelization on a 8 GB RAM Mac. It would
be possible to go a bit further with larger computing resources.
For the remeasurement circuits, it took ⇠ 2.5 hours to achieve
105 shots for g12 = 0 and g12 = 1. We note that classical
conditioning is not fully implemented in Qiskit (it is not possible
to do arbitrary classical calculations), so we have to apply an
exponential number of classically-conditioned gates.
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FIG. 8. A diagram of the IBMQ Mumbai computer layout,
where circles represent qubits and links represent qubits that
are connected. The qubits used for the measurement presented
in Fig. 10 are colored in black (logical qubits) and blue (coding
qubits). The readout errors are reported in the circles and the
two qubit errors are reported on links connecting the circles.
Error rates are reported from August 19, 2021.

7-qubit encoding and the 2-qubit encoding [Fig. 7(a)].
Analagous with the previous case, the error rates are
nearly equivalent for the two encodings except when ‘ π q,
in which case the scaling with q becomes relevant.

Finally, in Appendix D, we analyze an extended (8,4)
version of the Hamming code which includes an extra
ancilla qubit compared to the (7,4) code and has an in-
creased code distance of d = 4. Interestingly, there are
two natural circuits that lead to the same classical encod-
ing and di�er in the number of entangling gates. While
one would naively expect the circuit with the fewest gates
to have the lowest error rate, we find the opposite to be
true. This highlights the importance of designing encod-
ing circuits that are robust not only to readout errors,
but also to gate errors that occur during the encoding
circuit.

V. EXPERIMENTAL DEMONSTRATION

This section demonstrates the experimental perfor-
mance of the repetition code on the IBMQ Mumbai
quantum computer. This computer has 27 qubits total,
arranged in a pattern depicted in Fig. 8. To demonstrate
the active readout error correction protocol, we construct
a 5 qubit sub-computer consisting of the five filled black
circles in Fig. 8 (corresponding to qubits 12-16 in the
computer’s labeling scheme). Due to the adjacency map
of connected qubits, we are unable to encode all qubits,
without adding extra Swap gates. Instead, the first (top
right filled black circle in Fig. 8), second, fourth and fifth
(counter-clockwise from the first) are encoded with the
(3,1) repetition code to improve the readout errors.

In Fig. 9, the e�ective readout error rates for the four
qubits are compared under three di�erent scenarios. First,
we measure the readout error rate with the encoding
circuit but without performing error mitigation (i.e. we
discard the measurements of the ancilla bits). As expected,

FIG. 9. The e�ective readout error for the first (top right
filled black circle in Fig. 8), second, fourth and fifth (counter-
clockwise from the first) are encoded with the (3,1) repetition
code to improve the readout errors. For each qubit, the left
(green) bar corresponds to the nominal circuit without any
additional cnots, the blue represents the circuit with the addi-
tional qubits and cnots without using them for correction, the
red shows the results with the active readout error correction,
and the orange shows the results with active readout error
detection. The bar height is the average over all 25 = 32 initial
states and the error bar represents the standard deviation.

this leads to an increase in the readout error rate relative
to that of the nominal circuit. Indeed, the observed
increase of ≥ 1% is consistent with the independently
measured rate of depolarizing errors (Fig. 8).

Second, we measure the e�ective error rate after per-
forming either error detection or correction. With either
scheme, we observe a substantial improvement in the er-
ror rate, e.g. dropping by a factor of five in the first two
qubits compared to the unencoded qubits. This indicates
that the suppression of readout errors due to the encoding
outweighs the errors introduced by the entangling gates
and is consistent with the relatively large readout error
rates for these qubits (Fig. 8).

A global picture of the subcomputer performance is
illustrated in Fig. 10. Even though only four of the five
qubits are encoded, the probability for a prepared state
to be correctly measured increases from about 75% to
more than 90% on average.

VI. CONCLUSIONS

In this work, we proposed a scheme for active readout
error mitigation based on encoding the output state of
a quantum circuit via a classical error correcting code.
We showed that this approach generally provides signifi-
cant readout improvement on devices whose bare readout
error rate is comparable or larger than the error rate of
entangling gates.

More specifically, we introduced two forms of encoding
(the repetition code and the Hamming code) and analyzed
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and encode the qubits before they are measured into
a bigger multiqubit array. This encoding is analogous
to conventional strategies for quantum error correction,
but with two important distinctions. First, in the case
of readout error mitigation, one is only concerned with
bit-flip errors in the computational basis since phase-flip
errors do not a�ect the measured distribution. Second,
the encoding is performed after state preparation rather
than at the beginning of the circuit. These simplifications
allow us to circumvent the significant space and gate
overhead typically associated with full quantum error
correction.

The simplest version of active readout error mitigation
is based on the two-qubit repetition code. As depicted
in Fig. 1, each qubit is entangled with a unique partner
qubit using a single cnot gate (though other fully entan-
gling gates could also be employed). Without errors, the
measured outcomes are either 00 or 11, whereas with a
single bit-flip error, the measured outcomes become 01 or
10; single qubit readout errors can thus be detected but
not corrected. A natural extension of this encoding is to
introduce a second ancilla qubit and entangle it with the
original qubit (Fig. 3). This forms a three-qubit repetition
code and allows for the correction of single qubit readout
errors — i.e. by taking the majority vote among the three
qubit — or the detection of two-qubit readout errors. We
henceforth refer to these encodings as the (2,1) and (3,1)
codes, where the notation (n, k) indicates that n physical
qubits are required to encode k logical qubits.

By design, these encodings o�er substantial protection
against readout errors; nevertheless, they remain suscepti-
ble to certain gate errors that occur during the encoding
circuit. For example, the single cnot gate in the two-
qubit encoding may lead to a correlated bit-flip error on
both of the qubits, resulting in a spurious measurement
outcome despite error detection. In general, if the av-
erage two-qubit error rate is ‘, one expects an e�ective
readout error rate of qe� ¥ –‘, where – is an order-one
constant that depends on specific protocol (e.g. two-qubit
vs. three-qubit, and error detection vs. correction), as well
as the error model for the entangling gates. We confirm
this scaling for a symmetric depolarizing noise model via
analytical results in Sec. III and numerical simulations in
Sec. IV. Active readout error mitigation is thus beneficial

|0Í U R≠1

`̆

|0Í U • •

R≠1|0Í

|0Í

FIG. 3. An illustration of the repetition (3,1) code, which
enables both error detection and error correction.

Encoding (n, k) Det. or E�. error rate Discarded
cor.? q-dependence – measurements?

Repetition
code

(2,1)
(3,1)
(3,1)

det.
det.
cor.

≥ q2

≥ q3

≥ q2

1/4
1/4
3/4

Yes
Yes
No

Hamming
code

(7,4)
(7,4)
(8,4)
(8,4)

det.
cor.
det.

hybrid

≥ q3

≥ q2

≥ q4

≥ q3

1/4
7/8
1/4
1/4

Yes
No
Yes
Yes

TABLE I. Summary of the encoding schemes presented in this
work. The notation (n, k) indicates that n physical qubits
are required to encode k logical qubits. The e�ective error
rate Qe� [defined in Eq. (13)] scales non-linearly with the
nominal readout error rate q, and is linearly proportional
to the cnot error rate ‘ with a susceptibility – given by
Qe�/k ¥ –‘.

q3 : |0Í

U

• • •

R≠1

q5 : |0Í • • •

q6 : |0Í • • •

q7 : |0Í • • • •

q1 : |0Í •

q2 : |0Í •

q4 : |0Í •

q0 : |0Í

FIG. 4. Illustration of the encoding for the Hamming (8,4)
code. The first four qubits (indexed q3, q5, q6, q7) contain
logical state information while the remaining qubits are the
parity bits. For the Hamming (7,4) code we omit the last
parity bit (q0) and all gates connected to it, i.e. those within
the black dashed box.

whenever the two-qubit error rate is lower than the intrin-
sic readout error rate q. In practice, this condition is met
by many existing quantum devices, as depicted in Fig. 2
for Google Sycamore and a variety of IBMQ quantum
computers.

Generalizing our strategy, one may consider encoding
circuits for implementing arbitrary classical error correc-
tion codes. To do so, one would add ancilla qubits and
entangle them with the original qubits to generate a classi-
cal code in the computational basis, i.e. each bitstring on
the original qubits is mapped to an encoded bitstring on
the full set of qubits. To understand the tradeo�s of using
increasingly complex codes, we compare two families of
error encoding schemes: the aforementioned repetition
codes and two versions of the Hamming code—the (7,4)
and (8,4) codes—illustrated in Fig. 4. We test the perfor-
mance of these codes via numerical simulations in Sec. IV
and summarize their key di�erences in Table I. In partic-
ular, we find that both types of codes o�er comparable
levels of error mitigation, and the more important factor
for determining the e�ective error rate is whether error
detection or error correction is performed.

Hicks, Kobrin, CWB, Nachman 
(2108.12432)

One example was to develop a method to actively detect / 
correct readout errors
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