Quantum Simulation of Collective Neutrino Oscillations

Alessandro Roggero

Neutrino's roles in supernovae

• efficient energy transport away from the shock region (burst)

regulation of electron fraction in ν-driven wind (nucleosynthesis)

figures from Janka et al. (2007)energy deposition to revive the stalled shock (explosion)

Neutrino's roles in supernovae

• efficient energy transport away from the shock region (burst)

figures from Janka et al. (2007)

• energy deposition to revive the stalled shock (explosion)

regulation of electron fraction in ν-driven wind (nucleosynthesis)

Alessandro Roggero

Neutrino-neutrino forward scattering

Fuller, Qian, Pantaleone, Sigl, Raffelt, Sawyer, Carlson, Duan, ...

- diagonal contribution (A) does not impact flavor mixing
- off-diagonal term (B) equivalent to flavor/momentum exchange between two neutrinos
 - total flavor is conserved

Neutrino-neutrino forward scattering

Fuller, Qian, Pantaleone, Sigl, Raffelt, Sawyer, Carlson, Duan, ...

- diagonal contribution (A) does not impact flavor mixing
- off-diagonal term (B) equivalent to flavor/momentum exchange between two neutrinos
 - total flavor is conserved

Important effect if initial distributions are strongly flavor dependent

Alessandro Roggero

Collective Neutrinos

Neutrino-neutrino forward scattering

Fuller, Qian, Pantaleone, Sigl, Raffelt, Sawyer, Carlson, Duan, ...

- diagonal contribution (A) does not impact flavor mixing
- off-diagonal term (B) equivalent to flavor/momentum exchange between two neutrinos
 - total flavor is conserved

Important effect if initial distributions are strongly flavor dependent

Two-flavor approximation and the iso-spin Hamiltonian

Consider two active flavors (ν_e, ν_x) and encode flavor amplitudes for a neutrino with momentum p_i into an SU(2) iso-spin:

 $|\Phi_i\rangle = \cos(\eta_i)|\nu_e\rangle + \sin(\eta_i)|\nu_x\rangle \equiv \cos(\eta_i)|\uparrow\rangle + \sin(\eta_i)|\downarrow\rangle$

A system of ${\cal N}$ interacting neutrinos is then described by the Hamiltonian

$$H = \sum_{i} \frac{\Delta m^2}{4E_i} \vec{B} \cdot \vec{\sigma}_i + \lambda \sum_{i} \sigma_i^z + \frac{\mu}{2N} \sum_{i < j} \left(1 - \cos(\phi_{ij}) \right) \vec{\sigma}_i \cdot \vec{\sigma}_j$$

• vacuum oscillations: $\vec{B} = (\sin(2\theta_{mix}), 0, -\cos(2\theta_{mix}))$ • interaction with matter: • neutrino-neutrino interaction: • dependence on momentum direction: $\vec{B} = (\sin(2\theta_{mix}), 0, -\cos(2\theta_{mix}))$ $\lambda = \sqrt{2}G_F \rho_e$ • neutrino-neutrino interaction: • dependence on momentum direction: $\mu = \sqrt{2}G_F \rho_{\nu}$ • dependence on momentum direction: • dependence on momentum direct

for a full derivation, see e.g. Pehlivan et al. PRD(2011)

The mean field approximation

Approximate eq. of motion

$$\frac{d}{dt} \langle \vec{\sigma}_i \rangle = F \left[\langle \vec{\sigma}_i \rangle, \langle \vec{\sigma}_i \times \vec{\sigma}_j \rangle \; \forall j \neq i \right] \\ \approx F \left[\langle \vec{\sigma}_i \rangle, \langle \vec{\sigma}_i \rangle \times \langle \vec{\sigma}_j \rangle \; \forall j \neq i \right] \\ \rightarrow \text{Classical evolution of polarization}$$

vectors $\vec{P_i} = \langle \vec{\sigma_i} \rangle$ in flavor space

The mean field approximation

Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate the behaviour of another quantum system

Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate the behaviour of another quantum system

Quantum simulation of collective neutrino oscillations

$$H = \sum_{i} \omega_i \vec{B} \cdot \vec{\sigma}_i + \frac{\mu}{2N} \sum_{i < j} J_{ij} \vec{\sigma}_i \cdot \vec{\sigma}_j$$

- with only 2 flavors direct map to spin 1/2 degrees of freedom (qubits)
- \bullet only one- and two-body interactions \Rightarrow only $\mathcal{O}(N^2)$ terms
- all-to-all interactions are difficult with reduced connectivity

Quantum simulation of collective neutrino oscillations

$$H = \sum_{i} \omega_i \vec{B} \cdot \vec{\sigma}_i + \frac{\mu}{2N} \sum_{i < j} J_{ij} \vec{\sigma}_i \cdot \vec{\sigma}_j$$

- with only 2 flavors direct map to spin 1/2 degrees of freedom (qubits)
- only one- and two-body interactions \Rightarrow only $\mathcal{O}(N^2)$ terms
- all-to-all interactions are difficult with reduced connectivity

- SWAP qubits every time we apply time-evolution to neighboring terms
- in N steps we perform full evolution using only $\binom{N}{2}$ two qubit gates
 - NOTE: final order will be reversed

Kivlichan et al. PRL (2018)

B.Hall, AR, A.Baroni, J.Carlson PRD(2021)

Fidelity of quantum hardware is improving fast

The device used for the previous results was Vigo with a QV of 16

 $QV=2^n\approx$ we can run n full layers on n qubits with fidelity $\geq 66\%$

Fidelity of quantum hardware is improving fast

The device used for the previous results was Vigo with a QV of 16

 $QV = 2^n \approx$ we can run n full layers on n qubits with fidelity $\geq 66\%$

Alessandro Roggero

Collective Neutrinos

Fidelity of quantum hardware is improving fast

The device used for the previous results was Vigo with a QV of 16

 $QV = 2^n \approx$ we can run n full layers on n qubits with fidelity $\geq 66\%$

Alessandro Roggero

Collective Neutrinos

Recent progress in porting the scheme to trapped ions

V.Amitrano, AR, P.Luchi, F.Turro, L.Vespucci, F.Pederiva, arXiv:2207.03189 (2022)

Practical advantages of trapped ion devices

V.Amitrano, AR, P.Luchi, F.Turro, L.Vespucci, F.Pederiva, arXiv:2207.03189 (2022)

 all-to-all connectivity allows a reduction in circuit depth and the possibility of exploring different orderings for the decomposition

• removing SWAPs allows for a big reduction in number of rotations

 \bullet very low infidelities: $\approx 5\times 10^{-5}$ one-qubit, $\approx 3\times 10^{-3}$ two-qubit

Recent progress in porting the scheme to trapped ions II

V.Amitrano, AR, P.Luchi, F.Turro, L.Vespucci, F.Pederiva, arXiv:2207.03189 (2022)

N=8 neutrinos, one time step

Recent progress in porting the scheme to trapped ions III

V.Amitrano, AR, P.Luchi, F.Turro, L.Vespucci, F.Pederiva, arXiv:2207.03189 (2022)

Last two points required: ≈ 350 two-qubit gates over 8 qubits

Alessandro Roggero

Collective Neutrinos

CERN - 01 November, 2022 11 / 14

Current limitations of digital quantum simulations

current and near term digital quantum devices have limited fidelity and might not scale much beyond $N = \mathcal{O}(10)$ neutrinos in next years

Current limitations of digital quantum simulations

current and near term digital quantum devices have limited fidelity and might not scale much beyond N = O(10) neutrinos in next years

Possible paths to scalability in the meantime

• Analog Quantum Simulators

figure from Zhang et al Nature(2017)

• Describe low entanglement states with Tensor Networks

Alessandro Roggero

Collective oscillations and entanglement scaling

AR, PRD 104, 103016 (2021) & PRD 104, 123023 (2021)

Why is this interesting?

- entanglement scaling provides general criterion for appearance of collective modes in full many-body treatment
- entropy scaling as $\log(N) \Rightarrow$ large ab-initio simulations possible
- MPS method fails when entanglement too large ⇒ we can use this to detect interesting regimes to study on quantum simulators!

Alessandro Roggero

Collective Neutrinos

Summary and perspectives

- collective neutrino oscillations are an interesting **strongly coupled** many-body system driven by the **weak interaction** with possible important impact on flavor dynamics in extreme environments
- even the basic 2-flavor model for collective oscillations poses a challenging many-body problem well suited to quantum technologies
 - $\bullet\,$ Hamiltonian is two-local but all-to-all $\rightarrow\,$ best suited for trapped-ions
- first calculations on small scale digital devices show promise in studying flavor evolution and achievable fidelity is advancing at a rapid pace (N = 12 only 2 weeks ago [IIIa & Savage arXiv:2210.08656])
- analog trapped ion devices are an ideal platform to study mid-size systems as the interactions can be embedded in a natural way
- tensor network methods can help push the boundary of classical simulations and identify interesting regimes to study with simulators

Thanks to my collaborators

- Joseph Carlson (LANL)
- Alessandro Baroni (LANL→ORNL)
- Benjamin Hall (MSU)
- Valentina Amitrano (UniTN/TIFPA)

- Piero Luchi (UniTN/TIFPA)
- Francesco Turro (UniTN/TIFPA)
- Luca Vespucci (UniTN/TIFPA)
- Francesco Pederiva (UniTN/TIFPA)

MICHIGAN STATE

Error mitigation with zero-noise extrapolation

Li & Benjamin PRX(2017), Temme, Bravy, Gambetta PRL(2017), Endo, Benjamin, Li PRX(2018)

• for moderate ϵ other parametrizations (like exp) might be more useful

$$M(\epsilon) = M_0 e^{-\alpha\epsilon} \Rightarrow M_0 \approx M(\epsilon_1) \left(\frac{M(\epsilon_2)}{M(\epsilon_1)}\right)^{\frac{\epsilon_1}{\epsilon_1 - \epsilon_2}}$$

In that case it is very beneficial to ensure $M(\epsilon \to \infty) \to 0$ (mitigated B)

Collective oscillations with MPS

$$H = -\frac{\delta_\omega}{2} \left(\sum_{i \in \{1,\dots,N/2\}} \sigma_i^z - \sum_{i \in \{N/2+1,\dots,N\}} \sigma_i^z \right) + \frac{\mu}{2N} \sum_{i < j} \vec{\sigma}_i \cdot \vec{\sigma}_j \ ,$$

MF predicts no evolution, MPS has oscillations for $0 \le \delta_{\omega}/\mu \le 1$

Alessandro Roggero