

Quantum jet clustering with LHC simulated data

Jorge J. Martínez de Lejarza*, Leandro Cieri and Germán Rodrigo

Instituto de Física Corpuscular, Universitat de València - Consejo Superior de Investigaciones Científicas,
Parc Científic, E-46980 Paterna, Valencia, Spain

*jorge.j.martinez@ific.uv.es

1. Introduction

- 1. We study the case where quantum computing could speed up jet clustering of collider data [1].
- 2. We consider two new quantum algorithms, a quantum subroutine to compute a **Minkowski-based distance** between two data points, and a quantum circuit to track the rough **maximum** into a list of unsorted data.
- 3. When one or both algorithms are implemented in classical versions of well-known clustering algorithms (K-means, Affinity Propagation (AP) and k_T -jet) we obtain **comparable efficiencies** to those of their classical counterparts and potential **speedups** in dimensionality and data length.

2. Quantum distance in Minkowski space

To quantify the **similarity** of two quantum states we rely on the **Swap Test** method [2].

$$|\psi_{2}\rangle = \frac{1}{\sqrt{Z_{ij}}} (|\mathbf{x}_{i}||0\rangle - |\mathbf{x}_{j}||1\rangle),$$

$$|\varphi_{1}\rangle = H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle),$$

$$|\varphi_{2}\rangle = \frac{1}{\sqrt{Z_{0}}} (x_{0,i}|0\rangle + x_{0,j}|1\rangle).$$

 $|\psi_1
angle = |\psi_1
angle$

The quantum distance is obtained from the **measurement**:

 $|\psi_1\rangle = \frac{1}{\sqrt{2}} \left(|0, x_i\rangle + |1, x_j\rangle \right),$

In Minkowski space the distance among data points is the invariant mass squared:

$$P(|0\rangle|_{spat}) = \frac{1}{2} + \frac{1}{2} |\langle \psi_1 | \psi_2 \rangle|^2,$$

$$P(|0\rangle|_{temp}) = \frac{1}{2} + \frac{1}{2} |\langle \varphi_1 | \varphi_2 \rangle|^2.$$

$$s_{ij}^{(C)} = (x_{0,i} + x_{0,j})^2 - |\mathbf{x}_i + \mathbf{x}_j|^2$$
.

Finally we obtain:

We apply the *SwapTest* twice (**spatial** and **temporal** components):

$s_{ij}^{(Q)} = 2(Z_0(2P(0\rangle _{temp}) - 1)$	L)
$-Z_{ij}(2P(0\rangle _{spat})-1)$.	

4. Quantum clustering algorithms

Assuming data has been **loaded** from a quantum Random Access Memory (**qRAM** [3]) we obtain the following speed-ups:

Jet clustering	Quantum	Classical	Quantum	
algorithm	subroutine	version	version	
K-means	Both	$\mathcal{O}(NKd)$	$O(N \log K \log(d-1))$	
AP	Distance	$\mathcal{O}(N^2Td)$	$\mathcal{O}(N^2T\log(d-1))$	
k_T jet	Maximum	$\mathcal{O}(N^2)$	$\mathcal{O}(N \log N)$	
anti- k_T FastJet	Maximum	$\mathcal{O}(N \log N)$	$\mathcal{O}(N \log N)$	

6. Conclusions

- Quantum computing to **speed-up** jet clustering algorithms
- New methods: $\begin{cases} \text{Quantum distance} \longrightarrow \mathbf{SwapTest} \\ \text{Quantum maximum search} \longrightarrow \mathbf{Amplitude Encoding} \end{cases}$
- Proven achievements in LHC simulated data:
 - Quantum algorithms at least as good as classical
- When **QRAM** devices exist one would obtain
 - Quantum K-means \longrightarrow From $\mathcal{O}(NKd)$ to $\mathcal{O}(N\log K\log(d-1))$
 - Quantum AP \longrightarrow From $\mathcal{O}(N^2Td)$ to $\mathcal{O}(N^2T\log(d-1))$
 - Quantum $k_T \longrightarrow \begin{cases} \text{From } \mathcal{O}(N^2) \text{ to } \mathcal{O}(N \log N) \text{ (without Voronoi)} \\ \text{From } \mathcal{O}(N \log N) \text{ to } \mathcal{O}(N \log N) \text{ (with Voronoi)} \end{cases}$
- If \mathbf{QRAM} never exists \longrightarrow other data loading methods
 - Cut-off of Grover-Rudolph \longrightarrow From $\mathcal{O}(2^n)$ to $\mathcal{O}(2^{k_0(\epsilon)})$
 - $qGANs \longrightarrow From \mathcal{O}(2^n) to \mathcal{O}(poly(n))$

3. Quantum maximum search

Let L[0, ..., N-1] be an unsorted list of N items. The quantum algorithm to find the rough **maximum** using **amplitude encoding** is:

1. The list of N elements is encoded into a $log_2(N)$ qubits state:

$$|\Psi\rangle = \frac{1}{\sqrt{L_{sum}}} \sum_{j=0}^{N-1} L[j] |j\rangle ,$$

where $L_{sum} = \sum_{j=0}^{N-1} L[j]^2$ is a normalization constant.

2. The final state is measured.

This procedure is **repeated several** times to reduce the statistical uncertainty. The quantum circuit of this algorithm is as follows:

5. Quantum simulations

We tested our quantum clustering algorithms with a **simulated** physical N-particle **LHC event**, and we obtain these classifications:

Quantum K-means.

Quantum AP.

Quantum anti- k_T .

The performances of the **quantum** versions in **comparison** with their classical counterparts are shown below.

	Quantum	Quantum	Quantum	Quantum	Quantum
	K-means	AP	k_T	anti- k_T	Cam/Aachen
$arepsilon_c$	0.94	1.00	0.98	0.99	0.98

7. References

- [1] J.J.M. de Lejarza, L. Cieri and G. Rodrigo, Quantum clustering and jet reconstruction at the LHC, Phys. Rev. D 106 (2022) 036021.
- [2] H. Buhrman, R. Cleve, J. Watrous and R. de Wolf, Quantum finger-printing, Phys. Rev. Lett. 87 (2001) 167902.
- [3] V. Giovannetti, S. Lloyd and L. Maccone, Quantum random access memory, Physical Review Letters 100 (2008) 160501.