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1. Introduction

. We study the case where quantum computing could speed up jet clustering of collider data [1].

2. We consider two new quantum algorithms, a quantum subroutine to compute a Minkowski-based distance between two data points, and a
quantum circuit to track the rough maximum into a list of unsorted data.

3. When one or both algorithms are implemented in classical versions of well-known clustering algorithms (K-means, Affinity Propagation (AP) and
kr-jet) we obtain comparable efficiencies to those of their classical counterparts and potential speedups in dimensionality and data length.

2. Quantum distance in Minkowski space 3. Quantum maximum search
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4. Quantum clustering algorithms

Assuming data has been loaded from a quantum Random Access Memory
(qRAM [3]) we obtain the following speed-ups:

5. Quantum simulations

Jet clustering Quantum Classical Quantum
algorithm subroutine version version We tested our quantum clustering algorithms with a simulated physical
K-means Both O(NKd) O(N log K'log(d—1)) N-particle LHC event, and we obtain these classifications:
AP Distance O(N-Td) O(N-T log(d — 1))
kr jet Maximum O(N?) O(N log N)
anti-kp FastJet | Maximum | O(N logN) O(NlogN) | re—1111% I arrrt il et
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6. Conclusions

e (Quantum computing to speed-up jet clustering algorithms

Quantum distance — SwapTest Quantum K-means. Quantum AP. Quantum anti_kT.

Quantum maximum search —> Amplitude Encoding

e New methods: {

The performances of the quantum versions in comparison with their

e Proven achievements in LHC simulated data: .
classical counterparts are shown below.

— Quantum algorithms at least as good as classical Quantum | Quantum | Quantum | Quantum Quantum
e When QRAM devices exist one would obtain f-means AP b anti-kr | Cam/Aachen
Ec 0.94 1.00 0.98 0.99 0.98

— Quantum K-means — From O(NKd) to O(N log K log(d — 1))
— Quantum AP — From O(N?T4d) to O(N?Tlog(d — 1))

From O(N?) to O(N log N) (without Voronoi)
From O(N log N) to O(N log N)(with Voronoi)

— Quantum kr — { »
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e If QRAM never exists — other data loading methods 2] H. Buhrman, R. Cleve, J. Watrous and R. de Wolf, Quantum finger-
printing, Phys. Rev. Lett. 87 (2001) 167902.
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— Cut-off of Grover-Rudolph — From O(2%) to O(2*0(<))
— qGANs — From O(2™) to O(poly(n)))






