
Quantum computing (2+1)-dimensional QED
A. Crippa, G. Clemente, K. Jansen 

Deutsches Elektronen-Synchrotron DESY
Ein Forschungszentrum der Helmholtz-Gemeinschaft

Abstract
We propose to compute the running coupling for asymptotically free (2+1)-dimensional QED in the small and intermediate coupling regime using quantum computing techniques. To this end, we provide a Hamiltonian formulation of QED on 
a 2-dimensional spatial lattice. Using a variational quantum approach we compute the energy gap and the plaquette expectation value which can be related to the running coupling [1, 2]. We discuss different methods for an efficient encoding 
of the system on a quantum circuit and for the classical optimization. The overarching goal of the project is to match physical quantities such as the energy gap or the static force with Markov Chain Monte Carlo (MCMC) calculations in the 
regime where both approaches can be applied. This would allow to obtain a physical scale from the MCMC simulations and to follow the running of the coupling deep into the perturbative regime using quantum computations. The techniques 
and algorithms used here for asymptotically free QED as a prototype model can eventually also be used for future studies of QCD in (3+1)-dimensions on quantum computers.

Running coupling
● Compute short distance quantities from Quantum Computing results, e.g. renormalized coupling               at scale    . 
● Use static force at short distances (perturbative) to set the renormalization scale.
● Compute the expectation value of the plaquette operator                 define a boosted coupling (converges more rapidly than bare coupling):                  .     
● Use mass gap at intermediate coupling to match to MCMC simulations (will provide the physical value of the lattice spacing).

Hamiltonian
● Using the Kogut-Susskind formulation [3], fermions and antifermions are represented by single component field 

operators      , with      .

● Hamiltonian: 

Where           is the plaquette operator.

● The Hamiltonian is gauge invariant, i.e. it commutes with the Gauss' 
law operators

● We consider a periodic boundary condition system with four fermionic 
sites [4]: operators (rotators and strings) to simplify the expressions.

Encodings
One-hot 
● Maps the N fermionic states into an equal number of 

qubits and gauge physical states onto 2l+1 qubits [5]

● Truncated electric field and link operators

● Example (l=1):

● NOT resource efficient: needs                 qubits for N 
gauge variables.

Methods
Variational Quantum Algorithms
● In order to find the eigenvalue of a given operator H, 

the Variational Quantum Eigensolver (VQE) 
algorithm [6] finds the eigenvector    which 
corresponds to the lowest eigenvalue and that 
minimizes 

● Done by varying the  parameters through the 
combination of a classical and a quantum part.

 

● The Variational Quantum Deflation  (VQD) method 
[7] extends VQE to compute excited states by 
optimizing the cost function

  where    is a real-valued coefficient.

● Since our goal is to compute the energy gap between 
the ground state     and first excited state    , we follow 
three main steps:

1) Perform the VQE and obtain optimal parameters and 
an approximate ground state             ;

2) For       define a Hamiltonian:

        is arbitrary (must be larger than the energy gap);

3) Perform the VQE with the Hamiltonian      to find an 
approximation of the first excited state.

Results
Ground state Energy              Energy gap      Plaquette operator

[1] S. Booth, M. G ̈ockeler, R. Horsley, A. Irving, B. Joo, 
S. Pickles, D. Pleiter, P. Rakow, G. Schierholz, Z. 
Sroczynski, and H. St ̈uben, “Determination of λM S 
from quenched and nf=2 dynamical qcd,” Physics 
Letters B, vol. 519, no. 3, pp. 229–237, 2001.

[2] O. Raviv, Y. Shamir, and B. Svetitsky, 
“Nonperturbative beta function in three-dimensional 
electrodynamics,” Phys. Rev. D, vol. 90, p. 014512, 
Jul 2014.

[3] J. Kogut and L. Susskind, “Hamiltonian formulation 
of  wilson’s lattice gauge theories,” Phys. Rev. D, vol. 
11, pp. 395–408, Jan 1975.

[4] J. F. Haase, L. Dellantonio, A. Celi, D. Paulson, A. 
Kan, K. Jansen, and C. A. Muschik, “A resource 
efficient approach for quantum and classical 
simulations of gauge theories in particle physics,” 
Quantum, vol. 5, p. 393,Feb. 2021.

[5] D. Paulson, L. Dellantonio, J. F. Haase, A. Celi, A. 

Kan, A. Jena, C. Kokail, R. van Bijnen, K. Jansen, P. 
Zoller, and C. A. Muschik, “Simulating 2d effects in 
lattice gauge theories on a quantum computer,” PRX 
Quantum, vol. 2, p. 030334, Aug 2021.

[6] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, 
X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. 
O’Brien, “A variational eigenvalue solver on a 
photonic quantum processor,” Nature 
Communications, vol. 5, jul 2014. 

[7] T. Jones, S. Endo, S. McArdle, X. Yuan, and S. C. 
Benjamin, “Variational quantum algorithms for 
discovering hamiltonian spectra,” Phys. Rev. A, vol. 
99, p. 062304, Jun 2019. 

[8] G. Mazzola, S. V. Mathis, G. Mazzola, and I. 
Tavernelli,“Gauge-invariant quantum circuits for u(1) 
and yang-mills lattice gauge theories,” Phys. Rev. 
Research, vol. 3, p. 043209, Dec 2021

Ansatz and penalty term
● Instead of constrain reachable states to the physical 

ones in the ansatz, we define a penalty term in H 
that suppresses unphysical  contributions on the 
final states [8]:

  λ is the suppression coefficient, while        are
  the corresponding single-state projectors (i.e.           ).

● Assess how much the optimal state reached is 
unphysical by computing the expectation value 
                                        

of the projector into

● We consider pure gauge case with 200 iterations:

● With 800 iterations the optimizer can converge even 
if λ is large:

● With λ = 1000 and different number of iterations:

● Fermionic system: bisection method to choose the 
best λ. Compute percentage of unphysical state and 
tune λ: threshold of 99% of physical component.

Gray Encoding
● Minimum number of qubits required per gauge 

variable is         .
● Example (l=1): 

there are three physical states          for                     
                 , which can be encoded using only 2 
qubits using a Gray encoding pattern

● More resource efficient than one-hot encoding.

Source: http://openqemist.1qbit.com/docs/vqe microsoftqsharp.html.

Fig. A: Best results for VQD ground state energy as a 
function of the coupling in the electric basis (dots) at 
some values of truncation level l and exact 
diagonalization (lines). Bottom panel: discrepancies with 
the exact values. 

Fig. B: Best results for spectral gap as a function of 
the coupling g in the electric basis. (Notation as in Fig. 
A )

Fig. C: Plaquette measurements on the ground 
state (Fig. A) in the electric basis. (Notation as in Fig. A )

Conclusions
● Developed a resource efficient encoding for (2+1)-

dimensional QED      can eventually be brought on 
a quantum computer. 

● Demonstrated that suppression terms can be used 
to avoid unphysical states.

● Accurate results for      in broad range of couplings 
         can obtain static force.

● Accurate results for energy gap in intermediate 
range of the coupling       can make contact to MC 
simulations.

● Accurate results for       in broad range of coupling 
      can assess the renormalized coupling.

● Setup of (2+1)-dimensional QED developed here 
is a basis for extensions, e.g. adding topological 
terms, chemical potential or real time simulations.
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