
A Photonic Quantum Computer Simulation Software Platform
Zoltán Kolarovszki1, 2, Péter Rakyta1, 2, Ágoston Kaposi1, 2, Boldizsár Poór3, Szabolcs Jóczik1, Tamás Kozsik2, and Zoltán Zimborás1, 4

1Wigner Research Centre for Physics, 2Eötvös Loránd University, 3University of Oxford, 4Algorithmiq

A Photonic Quantum Computer Simulation Software Platform
Zoltán Kolarovszki1, 2, Péter Rakyta1, 2, Ágoston Kaposi1, 2, Boldizsár Poór3, Szabolcs Jóczik1, Tamás Kozsik2, and Zoltán Zimborás1, 4

1Wigner Research Centre for Physics, 2Eötvös Loránd University, 3University of Oxford, 4Algorithmiq

� www.piquasso.com � piquassoquantum@gmail.com � Budapest-Quantum-Computing-Group

We introduce the Piquasso quantum programming framework, a full-stack open-source platform for the simulation and programming of photonic quantum computers. Piquasso can be
programmed via a high-level Python programming interface enabling users to perform efficient quantum computing with discrete and continuous variables. Via optional high-performance
C++ backends Piquasso provides state-of-the-art performance in the simulation of photonic quantum computers. The Piquasso framework is supported by an intuitive web-based graphical
user interface where the users can design quantum circuits, run computations and visualize the results.

Piquasso Python library

Piquasso implements a different set of calculations for different computational
models corresponding to certain special cases, such as computations solely with
pure states or Gaussian states. The explicit use of these special cases results in
certain benefits, e.g. using Gaussian states are generally faster than using Fock
states.

On the right is a basic Piquasso example. On line 5, the program definition starts
with a with statement that will result in a Program instance. In this block, all
the instructions should be specified. The pq.Q class is used to specify the modes
on which the instruction on the other side of the | or __or__ operator. After
the program definition, a GaussianSimulator instance is instantiated with two
modes, and the result is acquired by executing program with simulator. The
execution parameter shots=100 is specified to acquire 100 samples from the
measurement.

Example code simulating Gaussian circuits

1 import numpy as np
2 import p iquasso as pq
3

4# Beginning o f program d e f i n i t i o n
5 with pq . Program () as program :
6 # Quantum Gates
7 pq .Q(0 , 1) | pq . Displacement (alpha =1.0)
8 pq .Q(0) | pq . Squeez ing (r =0.1 , phi=np . p i / 3)
9 pq .Q(0 , 1) | pq . Beamsp l i t t e r (theta=np . p i / 3 , phi = np . p i / 4)
10

11 # Measurement
12 pq .Q(0 , 1) | pq . ParticleNumberMeasurement ()
13

14# Choosing a s imu la to r
15 s imu la to r = pq . Gauss ianSimulator (d=2)
16

17# Execution
18 r e s u l t = s imu la to r . execute (program , shot s =100)

Performance benchmark PiquassoBoost C/C++ extension

To increase computational performance while keeping the benefits coming from the flexibility and
the popularity of a high-level Python API the Piquasso simulation package is coming with low-level
C++ engines that can be optionally incorporated into the Piquasso framework via lightweight
Python C++ extensions interface.

The PiquassoBoost package unifies all the C/C++ components working behind the Piquasso API
onto common grounds by utilizing a general development framework responsible for the management
of data arrays. Furthermore, it can off-load certain computations to an FPGA-based accelerator
backend which operates according to the Data-Flow Engine (DFE) paradigm.

On the left, a performance benchmark is shown comparing the DFE permanent calculator imple-
mentation and the fastest CPU implementations available today. We compared the performance
of our implementation provided in the Piquasso Boost library to the implementation of TheWalrus
version 0.16.2 package also having implemented parallelized C++ engines to evaluate the permanent
function. (Newer versions on TheWalrus do not contain C++ engines, nor extended precision im-
plementations.)

Web Application

The Piquasso web application is a dynamic drag-and-drop circuit called the Composer,
which can be used to compose quantum circuits. The created quantum program can
be sent to the server for simulation. After the simulation, one can acquire information
about the particle number detection probabilities, the Wigner function or the canonical
momentum and position distribution. One can also export the generated data in a JSON
file for further processing and the application even generates a Python code, which could
be run using the installed Piquasso/PiquassoBoost libraries.

On the right one can see a basic circuit created by the Composer. Users can use a similar
set of gates as in the installed libraries. After running the simulation, one is able to visualize
their data e.g. by plotting a Wigner function. Piquasso users are also able to browse, find
and discover new circuits in Piquasso’s public repository. Using this sharing functionality
users can extend the community’s knowledge base with their ideas.

Piquasso web interface

