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Physics at LHCb -jet identification with QMLb

- vs -jet on IBM Hardwareb c

Ising-like approach to track reconstruction

• LHCb is a general purpose forward detector that 
studies phase-space regions complementary to 
other experiments


• LHCb can rely on:

• Excellent tracking performance

• Excellent Particle Identification (PID)

• Good calorimeter reconstruction


• The LHCb Data Processing and Analysis (DPA) 
project explores new innovative analysis 
techniques 

• Quantum Computing (QC) may help in improving 
analysis performance for several tasks:

• Jets reconstruction and classification

• Track reconstruction

• …


• The latest studies on QC and Quantum Machine 
Learning (QML) at LHCb are shown

• The LHCb tracking system is responsible for reconstructing the 
trajectories of charged particles produced in the pp collisions


• Particles leave signals (hits) flying through the detector. Original 
trajectories (tracks) are reconstructed from the set of 3D hits

Figure 1:  plot showing the phase-space region 
studied by LHCb (in yellow) with respect to other 
experiments
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Figure 8: Toy model of an event in 
the tracking system: a collection of 
hits left by the charged particles in 
the detector layers. The grey lines 

 represent all the candidate 
segments between subsequent 
detectors. Coloured segments are 
the real track segments.
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• At LHCb it is possible to distinguish jets produced by  and  quarks

• This is fundamental to measure angular  asymmetries

• An inclusive approach using features coming from the jet substructure has been used

• A QML algorithm has been applied to the full LHCb simulation of  di-jets events at 13 TeV

• Two circuit structures have been studied:
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• Circuits have been simulated with Pennylane library

• The figure of merit is the tagging power :


• Results have been compared with a standard Deep 
Neural Network (DNN) and with the LHCb muon 
tagging algorithm


• For low number of qubits, the DNN and the QML 
perform similarly


• For high number of qubits (16), the Angle Embedding 
structure approaches the DNN performance  still 
room for improvement!
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• Performance has been evaluated depending on 
several aspects:

• Number of training events: for low number of 

training events QML seems to perform better 
than classical algorithms


• Number of variational layers: after some 
repetitions of variational layers, performance 
saturates


• Noise: simulated noise contribution from IBM 
backends, structures with few qubits are 
robust to noise

Figure 5: testing accuracy as a function of the number of 
training events for the DNN (blue) and the Angle Embedding 
circuit (red)

Figure 2: scheme of Angle and Amplitude 
Embedding circuits on four qubits register

Figure 3: sketch of inclusive (upper jet) and exclusive (lower 
jet) approaches to -jet charge identificationb

Figure 4: tagging power  as a function of jet  for 
QML and classical methods
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• The Denby-Peterson (DP) algorithm solves a track reconstruction 
problem as a segment classification optimising the Hamiltonian
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• It favours aligned and short pairs of 
segments and penalises pairs of segments 
that share the same head or the same tail 

• It keeps the number of active segments 
close to the number of hits N a
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QAOA algorithm
• The  Quantum Approximate Optimisation Algorithm (QAOA) finds 

approximate solutions to combinatorial problems.

•     is used as a problem Hamiltonian 

• A mixing Hamiltonian  is defined, which usually takes the form of 

 
 
where each  is a Pauli  gate applied to the -th qubit.


• The following state is constructed 

where 

• The coefficients  and  are optimised by a classical optimiser to 

minimise the expectation value 

HP
HM

Xi X i

|ψ0⟩ = H⊗N |0⟩
β γ

⟨ψ( β , γ ) |HP |ψ( β , γ )⟩

ϵtag = ϵeff (2a − 1)2 ϵeff = efficiency

a = mistag
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|ψ( β , γ )⟩ = e−iβnHMe−iγnHPe−iβn−1HMe−iγn−1HP . . . e−iβ1HMe−iγ1HP |ψ0⟩

•  vs -jet classification is fundamental for several physics channels, such as Higgs decay to 

• Starting point: LHCb performance on Secondary Vertex (SV) tagging with BDTs

• SV is required in jets, SV features are used as input feature to QML and BDT

• Simulations are performed with Pennylane+JAX
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• Hardware results for low number of qubits and 
low number of gates show comparable 
results to simulations


• Transpiling study shows importance of careful 
circuit design


• In the pipeline:

• Error mitigation and scaling to more qubits

• Correlations between qubits using 

entanglement entropy to get physics insights 

• Dependence on scaling and data embedding has 
been assessed 


• Performance with respect to number of layers and 
qubits has been studied


• QML algorithms perform as good as BDT

• Evaluation has been performed on IBM quantum 

computers ibmq_toronto and ibm_nairobi

Probabilities

Figure 7: evaluation results for  (blue) and -jet (orange) 
classification for ibmq_toronto quantum computer on 
1000 events
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Figure 6: accuracy as a function of number of layers and qubits
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Quantum Hopfield neural network

HM = X1 + X2 + . . . XN

• Hopfield networks are a class of recurrent neural 
networks usually employed in the contexts of pattern 
recognition and associative memories 
 
 
 
 
 
 

• Hopfield networks have been used in tracking 
applications at LHCb, ALICE, ALEPH and HERA-B


• Rebentrost et al. have developed a quantum algorithm 
to optimise an Hopfield network.


Network embedded in the amplitude of a quantum state 
 

Optimisation using the quantum algorithm for linear 
systems of equations with a exponential advantage over 
classical algorithms for events with a large number of hits.

Figure 9: a Hopfield network is a set of densely, 
not self-connected binary neurons. The 
coupling between neurons is described in the  
matrix. The optimisation is done updating one 
neuron at the time until a stable state is reached. 
Tracking applications, a neuron is associated to 
each candidate segment. The couplings are 
determined according to the DP Hamiltonian
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