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b-jet identification with QML

At LHCD it is possible to distinguish jets produced by b and b quarks

This is fundamental to measure angular bb asymmetries
* An inclusive approach using features coming from the jet substructure has been used

« A QML algorithm has been applied to the full LHCb simulation of bb di-jets events at 13 TeV
* Two circuit structures have been studied:
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Figure 3: sketch of inclusive (upper jet) and exclusive (lower

Figure 2: scheme of Angle and Amplitude jet) approaches to b-jet charge identification
Embedding circuits on four qubits reqgister

14 3 Muon Tag  Circuits have been simulated with Pennylane library
b . i LHCb simulation 4 DNN » The figure of merit is the tagging power €,
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« b vs c-jet classification is fundamental for several physics channels, such as Higgs decay to bb/c¢ = +++ ++ ; | a = mistag
« Starting point: LHCDb performance on Secondary Vertex (SV) tagging with BDTs > 44 ++ * Results have been compared with a standard Deep
SV is required in jets, SV features are used as input feature to QML and BDT k4 = ? = Neural Network (DNN) and with the LHCb muon

tagging algorithm

 For low number of qubits, the DNN and the QML
perform similarly

* For high number of qubits (16), the Angle Embedding

Simulations are performed with Pennylane+JAX

0.7652 0.7886 0.8028 0.8087 0.8173 0.8246 0.8291 0.8286 0.8291

(NGt 0.7649 0.7895 0.8083 0.8143 0.8168 0.8211 0.8275 0.8266 0.8281

ONZLRN 0.7808 0.7863 0.8057 0.8083 0.8199 0.8152 0.8222 0.8205 0.8225 * Dependence on scaling and data embedding haS

9 10 11 12 13

S = N W Bk L &N O 0 O
AP EPEEEE BPEPETETI ETETETETS SYRTETTE SPEETEE STEVETErE ST SYETETErE SRR A

(NSELN 0.7667 0.798 0.8078 0.816 0.8192 0.8187 0.8202 0.8233 0.8227 -+-———8— .
VRGN 0.7663 0.7972 0.8081 0.8109 0.8183 0.819 0.8231 0.8199 0.8235 ° gzsfr:)ra.rizs]scseea/ith respect .to number O.I: Iayers and - : ® ! StrUCture approaCheS the DNN performance — Stl”
o © KUZEEN 0.7855 0.806 0.8121 0.8128 0.8217 0.824 0.8255 0.8192 0.8261 : , 0 40 60 80 100 room for improvement!
% ~ N 0.7619 0.794 0.8108 0.8169 0.8145 0.8171 0.8185 0.8143 0.8182 quItS has been StUdIed
s + QML algorith f d as BDT pr (GeVie)
" 0.6129 0.7997 0.805 0.8139 0.8177 0.8193 0.8212 0.8199 0.8212 a gOrl MsS periorm as good as Figure 4: tagging power e,,, as a function of jet py for
(BB i e+ Evaluation has been performed on IBM quantum | i agcassia metos e——
N B computers ibmg torontoand ibm nairobi 0.68 1 O
ol 0.7178 0.7901 0.7983 0.798 0.8015 0.8023 0.8029 - i + —————— I’
N 0.6192 0.7616 0.7626 0.7676 0.763 0.7679 ° I /
N e ey s Performance he}s been evaluated depending on ., / LHCb simulation
1 2 3 4 5I 6 7 8 9 10 .70 Se;\/leralbaspe(;ts' o ‘ | 5 f ' I/'
ayers ] o . /
Figure 6: accuracy as a function of number of layers and qubits D b — jet B8 UIIT? er of training events: for low number o I/
01 ¢ —jet training events QML seems to perform better J
: : : S
* Hardware results for low number of qubits and o - than classical algorithms = !
- - Q /
low number of gates show comparable * Number of variational layers: after some < /
results to simulations 40 repetitions of variational layers, performance 0-561 /
* Transpiling study shows importance of careful 30 - saturates ¢
circuit design  Noise: simulated noise contribution from IBM 0.5 -
* In the pipeline: . backends, structures with few qubits are X
g = . . . . -=@®- Angle Emb.
* Error mitigation and scaling to more qubits 10 - robust to noise » ~#- DNN
+ Correlations between qubits using ) J T €
entanglement entropy to get physics insights 0.4 0.2 0o 02 0.4 References Number of training events
References Probabilities * Gianelle A. et al, Quantum Machine Learning for b-jet charge Figure 5: testing accuracy as a function of the number of
- LHCb Collaboration, Identification of beauty and charm quark jets at ~ Figure 7: evaluation results for b (blue) and c-jet (orange) identification. J. High Energy Phys. 2022, 14 (2022) training events for the DNN (blue) and the Angle Embedding
LHC, JINST 10 (2015) 06 classification for ibmq_toronto quantum computer on - LHCb Collaboration (2020). Simulated jet samples for quark flavour circuit (red)
- Ballarin M. et al., Entanglement entropy production in Quantum Neural 1000 events identification studies. CERN Open Data Portal

Networks, arXiv:2206.02474

Ising-like approach to track reconstruction

Track reconstruction QAOA algorithm Quantum Hopfield neural network

- The LHCDb tracking system is responsible for reconstructing the < The Quantum Approximate Optimisation Algorithm (QAOA) finds - Hopfield networks are a class of recurrent neural
trajectories of charged particles produced in the pp collisions approximate solutions to combinatorial problems. networks usually employed in the contexts of pattern
- Particles leave signals (hits) flying through the detector. Original -« 7 is used as a problem Hamiltonian H, recognition and associative memories

trajectories (tracks) are reconstructed from the set of 3D hits

A mixing Hamiltonian H,, is defined, which usually takes the form of

Figure 9: a Hopfield network is a set of densely,
not self-connected binary neurons. The
coupling between neurons is described in the W,
matrix. The optimisation is done updating one
neuron at the time until a stable state is reached.
Tracking applications, a neuron is associated to

Figure 8: Toy model of an event in

the tracking system: a collection of _ _ _ , _
hits left by the charged particles in where each X; is a Pauli X gate applied to the i-th qubit.

the detector layers. The grey lines  « The following state is constructed

S,, represent all the candidate — . . . . . . each candidate segment. The couplings are
segments between subsequent | l//( 'B , 7)) — e_lﬂnHMe_WnHPe_l n—1HMe—Wn—1HP o e—lﬁlHMe—WlHP | WO> determined according to the DP Hamiltonian
detectors. Coloured segments are QN . H field t K h b d i t Ki
the real track segments. where |yn) = H®V|0) opfield networks have been used in tracking
) - i
- The coefficients f and ? are optimised by a classical optimiser to applications at LHCb, ALICE, ALEPH and HERA-B _
o _ —> _ —> _ « Rebentrost et al. have developed a quantum algorithm
- The Denby-Peterson (DP) algorithm solves a track reconstruction ~Minimise the expectation value (y (4, v) | Hp|w(f, v)) to optimise an Hopfield network.
problem as a segment classification optimising the Hamiltonian Network embedded in the amplitude of a quantum state
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systems of equations with a exponential advantage over

* It favours aligned and short pairs of classical algorithms for events with a large number of hits.

segments and penalises pairs of segments
that share the same head or the same tail
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