Conveners
Industry & Entrepreneurship
- Amanda Diez Fernandez (CERN)
- Benjamin Frisch (CERN)
Keynote talk and discussion on current challenges and opportunities
The ATIQ project in Germany brings together multiple universities and industries to further develop technologies and methods needed for scalable trapped-ion quantum computers. The Leibniz Universität Hannover is one of three centers for trapped ions within the collaboration, alongside the Universität Siegen and the Johannes Gutenberg Universität Mainz. Each trapped-ion quantum computing...
Quantum Computers rely on classical instrumentation to control the quantum processing unit. In 2018, Zurich Instruments introduced the first commercial Quantum Computing Control System (QCCS), designed to control more than 100 superconducting and spin qubits. In this talk, I will introduce the basic instrumentation required to operate a quantum computer and present our collaborative approach...
Trapped ions are one of the leading and furthest developed technologies in quantum computing. However, despite higher quality operations than on any other platform and the absence of variations in qubit quality, the road to fault-tolerant quantum computing remains long and steep. In this talk, I will briefly review the state of the art of the trapped-ion platform, illustrate the current...
The current status of trapped ions quantum computer development in Europe will be presented from the industry perspective, with focus on main challenges for the next few years. A brief overview of practical aspects related to scaling the number of qubits and improving the performance of quantum computers will be given. Special attention will be devoted to qubit control electronics and a...
Qilimanjaro Quantum Tech is a start-up in quantum computing based in Barcelona and founded in 2019. Qilimanjaro counts with an integrated hardware and software team that focuses on coherent quantum analog and high-quality qubit superconducting-based architectures to deliver scalable app-specific quantum processors and services in a short timeframe. In this talk we will present an overview of...
Diamonds quantum computers offer a path to realize the potential of quantum computing,
but what does that look like in practice?
Quantum computing promises to deliver extraordinary advances in computational power, but the real question is: “what are the steps we need to take between now and achieving that goal?”. In my talk I will explain the journey that diamonds will enable, and why...
In this presentation I share three Roche scientific use cases covering pharmaceutical relevant applications for Quantum Computing.
The use cases and the results of our experiments helps us to understand in what area Quantum Computing will disrupt the R&D productivity by when and how much.
We briefly present the activities of the Quantum Computing and Simulation Center of Padova University and of the Italian National Center for HPC, Big Data and Quantum Computing. In particular, we review tensor network methods, a class of algorithms that can guide and support the development of the NISQ era quantum computers, focusing on some of their potential industrial applications.
Variational algorithms are among the most promising near-term applications of quantum computers. Their execution is particularly challenging for current quantum computing systems since they require a tight interaction between the host CPU and the quantum accelerator. Here we present Intel Quantum SDK, an LLVM-based C++ compiler toolchain to efficiently compile and execute variational...