GBT-SCA
Slow Control Adapter ASIC

S. Bonacini, A. Gabrielli, K. Kloukinas, A. Marchioro, P. Moreira, F. Sousa

LHCb Upgrade Electronics meeting
15/12, 2011
The GBT System

- **A Single Link for:**
 - **Readout (DAQ)**
 - High speed unidirectional (up-link)
 - Trigger data (up-link)
 - **Timing Trigger and Control (TTC)**
 - Clock reference and synchronous control (down-link)
 - Trigger decisions and control (down-link)
 - Low and fixed latency
 - **Experiment control (SC/DCS/ECS)**
 - Modest bandwidth (bidirectional link)

- **Custom ASICs in the detectors:**
 - Radiation Tolerant: Total dose & Single Event Upsets

- **Commercial components in the control room**
 - FPGAs used to implement multi-way transceivers
GBT Front End interconnects

FE ASICs
- Data
- Trigger
- e-port

FE e-links
- 8 ports @ 320 Mbps
- 16 ports @ 160 Mbps
- 32 ports @ 80 Mbps

User Buses and I/O signals
- for Control & Monitoring

GBT
- 1 port @ 80 Mbps
- e-port
- Demux
- mux
- Framer SerDes

One differential pair per direction

GBT Link
- 8 ports @ 320 Mbps
- 16 ports @ 160 Mbps
- 32 ports @ 80 Mbps

15/12/11
Kostas.Kloukinas@cern.ch
Design Team

- Core Digital Logic: Alessandro Gabrielli
- e-port interface: Sandro Bonacini
- ADC: Filipe Pereira Alves De Sousa
- DAC: Xavier Llopard (Medipix-3 IP block)
- Chip Assembly & AOB: Kostas Kloukinas

15/12/11 Kostas.Kloukinas@cern.ch
The Slow Control Adapter ASIC

- ASIC dedicated to slow control functions.
- System Upgrades for SLHC detectors.
- Replacement for the CCU & DCU ASICs (CCU: Communication Control Unit, DCU: Detector Control Unit in CMS).
- Flexible enough to match the needs of different Front-End systems.

Key Features
- Dual redundant e-Ports for GBTX e-links.
- 16 I2C master controllers @ 100kbits/s or 1 Mbits/s.
- 1 SPI master controller
- 1 JTAG master controller
- 32 multiplexed ADC channels (12-bit dual slope integrating ADC @ 3.5KHz)
- 4 DAC channels
- 32 Digital I/O lines individually programmable.
- 8-bit memory bus
- 4 Interrupt inputs

Technology: CMOS 130nm using radiation tolerant techniques.
The Three Communication Layers of the SCA:

- **GBT-link Layer**
 - Connects the GBT ASIC to the Control Room electronics via a point-to-point, bi-directional, 4.8Gbps, optical link using a special, SEU robust, transport protocol.
 - The transport protocol is totally transparent to the user data.

- **e-link Layer**
 - Connects the GBT to the SCA ASIC via a point-to-point, bi-directional, 80Mbps, electrical link using a packet oriented transport protocol.
 - Data packets are encapsulated by the GBT-link protocol.

- **Channel Layer**
 - Connects the SCA to the Front-End ASICs via multidrop, bi-directional, 100Kbps - 1Mbps, electrical links, via the so called “Channel Blocks”.
 - SCA on-chip peripherals (ADC, DAC, PIA, etc) are also Channel Blocks.
 - Channel Blocks are controlled via a command driven protocol.
 - The Channel Protocol Commands are encapsulated by the e-link protocol.
GBT-link Packet Format

- **Fixed packet length**: 120bits
 - Packet transmission rate: 1/25ns
 - Data transmission rate: 4.8 Gbps

- **Fixed bandwidth allocation**:
 - Trigger path: 640 Mbps
 - Control path: 160 Mbps
 - 1 internal e-link (for GBT management)
 - 1 external e-link (for GBT-SCA chip)
 - Data path: 2.56 Gbps
 - 8 e-links @ 320 Mbps
 - 16 e-links @ 160 Mbps
 - 32 e-links @ 80 Mbps

- **Data flow**:
 - Symmetrical, Bi-directional data transmission.
 - Transmission of GBT-packets is continuous.
 - Data from e-link ports are multiplexed/demultiplexed in the GBT-link stream.
 - GBT data path is unaware of the e-link transfer protocol.

15/12/11

Kostas.Kloukinas@cern.ch
e-link & SCA Packet Formats

- **FLAG:** Frame delimiter character.
- **Address:** Packet destination address.
- **Control:** Indicates the type of the data packet.
- **FCS:** Frame Check Sequence for transmission error detection.

- **CH#:** (Channel ID) specifies the SCA Channel Block to be addressed – i.e. I2C, JTAG, NC, Monitor, etc. -
- **TR#:** (Transaction ID) incremental identification number for each transmitted command.
- **CMD:** is a command code that specifies a given transaction. The operation can refer to a specific internal register of the channel – i.e. a configuration register – or a front-end ASIC destination address. In this case an address field follows the command.
- **LEN:** is a field that ranges from 0 to 255 that specifies the **DATA** field length. For read commands **LEN** is 0,
- **DATA:** is an optional variable length field upon **LEN** value.
Channel Block Commands

- Channels receive commands from the network controller and perform actions on the bus to which they connect as masters.
- These commands are contained in the data field of the packet.
 - The data content of a given packet is interpreted differently according to the channel to which it is addressed.
- Each channel type has a set of valid commands;
 - Channels receiving an invalid command do not execute any action and they report the error condition to the network controller.
- Upon reception of a command, a channel performs the required operation on its interface.
 - Depending on the particular command it can then return a reply to the network controller as a data block which will be transmitted to the control room electronics via the e-link.
- Example of I²C Channel Commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>CMD [hex]</th>
<th>Command and Reply Format</th>
</tr>
</thead>
</table>
| Single byte write normal mode | 0x00 | C: CH#+TR#+CMD+A7+DW
 | | R: none or CH#+TR#+ACK |
| Single byte read normal mode | 0x01 | C: CH#+TR#+CMD+A7
 | | R: CH#+TR#+DR+ACK |
- e-port implementation for the GBT-SCA
 - e-link interface: electrical, bi-directional chip-to-chip interconnect at 80Mbps.
 - Support for Manchester encoded data (at half data bandwidth) for AC coupled e-links.
 - HDLC (High Level Data Link Control) packet oriented communication protocol.
 - Special commands: CONNECT, RESET, TEST (loopback)
 - Acknowledge transactions using the HDLC protocol mechanism (packet numbering).
 - Altera (open core) ATLANTIC bus to interface with internal logic (Network Controller).
Dual Redundant e-ports

- A GBT-SCA chip can connect with two adjacent GBTX chips for redundancy.
- The GBT-SCA chip is equipped with a Primary and a Secondary e-port.
- Only one e-port is needed for operation.
- Only one e-port can be active at a time.
- Data from the inactive e-port is discarded.
- Switching between ports is command driven. (HDLC “CONNECT” command)
- Clock activity (or noise) on the “rx_clk” input of the inactive port is discarded.

- Upon start up, the user application software should send a “CONNECT” command to activate the Primary e-port from the Primary e-link.
- To switch to the Secondary e-port a “CONNECT” command should be send through the Secondary e-link.
The I2C port

- 16 independent I2C master channels
- Concurrent operation of all 16 channels
- Support is limited to single bus master topologies.
- 7-bit and 10-bit addressing modes.
- Single-byte and Multi-byte transfer modes.
- Read-Modify-Write mode that allows for AND, OR, XOR logic operations with a Mask register.
- Programmable transfer rate from 100Kbps to 1Mbps.
- Power Down mode per channel
The SPI port

- Synchronous byte oriented serial link.
- Full duplex mode
- Programmable transfer rate from 1Mbps to 10Mbps.
- RW commands composed of 8/16/32 bits
- Power Down mode
The JTAG port

- Simplified implementation of a JTAG controller.
 - Two 128 bit shift registers to hold the TDO/TDI and TMS bit-streams.
 - Protocol implemented in software.
- Programmable transfer rate from 1Mbps to 10Mbps.
- RW commands composed of 256 bits in 128 pairs of (TMS/TDO)
- Power Down mode
The Digital Parallel IO port

- Similar functionality to a Motorola PIA (Parallel Interface Adapter)
- 4 independent 8-bit wide ports with programmable data direction.
- Static IO operation or
- Strobe IO operation (using STRB_IN, STRB_OUT)
 - Interrupt driven transactions
- Power Down mode
The Memory Port

- Simple memory-like interface
- Uses the same pins as the Parallel IO port
- 16 bit Data
- 16 bit Address
- Read/Write line
- Strobe line
- Commands:
 - Single (16-bit) Read
 - Single (16-bit) Write

Note that this slide shows an 8-bit address/data bus. The actual hardware implementation is 16-bit address/data bus.
The Interrupts

- 4 independent interrupt input signals
- Edge sensitive (High to Low transitions)
- Can be used to generate and transmit a special “interrupt event” packet to the remote control system.
- The interrupt inputs are edge sensitive.
ADC

- 12-bit ADC (LSB = 244 µV)
- Dual-slope architecture
- Input range: GND < Vin < 1 V
- Single supply voltage: VDD = 1.2 V
- System clock frequency: 40 MHz
- Max. conversion rate ≈ 3.5 KHz
 Max conversion time ≈ 250 µsec
- Operating temperature: -30°C to +80°C
- 32 Multiplexed Input channels
- 1 channel occupied by an on chip Temp sensor
 All channels feature a switchable 10 µA current source to support Pt sensors.
- Internal bandgap reference circuit.
- Power consumption
 350uA @ 1.2V (420uW analog part)
- Power Down mode
There are 4 independent DAC channels.
Voltage output: 0V - 1.5V (preliminary specs)
Specifications

- **Documentation:**
 - Short “Specifications” document (draft)
 - Long “Users Manual” document (draft)

GBT-SCA: Slow Control Adapter for the GBT system.

General Description
The GBT-SCA is an ASIC for control and monitoring of the embedded front-end electronics for the particle physics detectors. It is targeted for system upgrades for the SLHC detectors where can be considered as a replacement for the CCU & DCU ASICs. The GBT-SCA implements multiple protocol serial and parallel communication interfaces with the front-end ASICs as well as analog inputs and outputs for environment parameter monitoring. It connects electrically to a communication ASIC, the GBT, to form long distance optical networks. It is built in a CMOS 130nm process using radiation tolerant design techniques.

Features
- 1 e-Port for GBT
- 16 4C master controllers @ 100kbits/s or 1 Mbits/s.
- 1 SPI master controller
- 1 JTAG master controller
- 32 Analog Inputs
- 1 Analog Output
- 32 Digital Inputs or Outputs individually programmable.
- 1 8 bit memory bus
- 4 Alarm Inputs

Key Specifications
- Supply Voltage: +1.2V
- Power Dissipation: 800mW
- Operating Temp: -10°C — +50°C
- ADC resolution: 12-bit @ 3.5kHz
- D/A resolution:
- Technology: CMOS 130nm
- Radiation Tolerant Design.
Status & Plans

- Design Work Status
 - Digital Core Logic RTL design (*on going*)
 - All interfaces are designed.
 - Top level Simulation test bench is ready.
 - Functional verifications (data flow control & exception handling)
 - ADC IP block (*on going*)
 - IP integration
 - DAC IP block (*on going*)
 - IP integration
 - e-port IP block & SLVS IO pads (*Ready*)
 - Design implementation:
 - Triple Module Redundancy for SEU tolerance (*on going*)
 - Low power techniques (clock gating)
 - Floorplanning
 - Physical Verification
 - **Target Tape-out date: May, 2012**
Physical Layer (electrical)

- **SLVS (Scalable Low Voltage Standard)**
 - JEDEC standard: JESD8-13
 - Differential voltage based signaling protocol.
 - Voltage levels compatible with deep submicron processes.
 - Typical link length runs of 30cm over PCB at 1Gbps.
 - Low Power, Low EMI
 - Application in data links for Flat Panel displays in mobile devices.
 - Mobile Pixel Link, MPL-2 (National semi.)

SLVS specifications brief
- 2 mA Differential max
- Line impedance: 100 Ohm
- Signal: +/- 200 mV
- Common mode ref voltage: 0.2V
Resets on GBT-SCA