IPMI developments at LAPP

Alain BAZAN, Fatih BELLACHIA, Sébastien CAP, Nicolas DUMONT DAYOT, Laurent FOURNIER, Nicolas LETENDRE, Guy PERROT, Isabelle Wingerter

outline

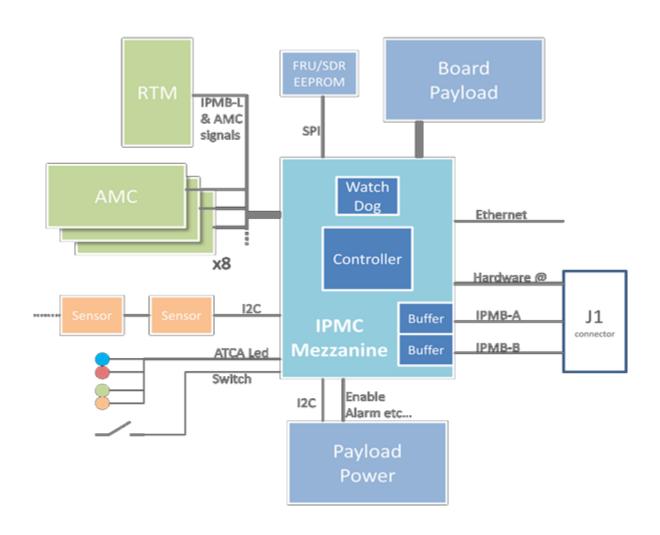
- context
- motivations
- IPMI developments
- test board developments

context

- evolving demand concerning performances and versatility in physics instrumentation (dataflow up to 1.4Tbits/s per board)
- even more complex electronics, firmware, and software
- growing need for easier and faster upgrades either for electronics, firmware, and software
- ATCA is a promising standard with multiple high speed commuted serial links

motivations

- master ATCA standards
- have the best knowledge of the technologies we use
- long-term development with evolving components
- standardization of board management -> IPMI


IPMI developments

- our needs :
 - ☐ complete ATCA hardware management
 - power supplies
 - hot swap
 - diagnostics
 - firmware upgrade
 - sensor reading...
 - ☐+ JTAG access for debugging
 - ☐ + board configuration through ethernet
 - FPGA firmware upload
 - coefficient upload for signal processing
 - experiment monitoring/slow control

IPMI developments

- our IPMI solution
 - low cost microcontroller with a small FPGA
 - open source software (coreIPM), IPMI 1.5 compliant with relevant subset of IPMI 2.0
 - CMT + GNU development tools
- originally implemented for an AMC
- already extended to a standard ATCA board
 - heavily tested and compliance with PICMG 3.0
 Revision 3.0 checked with a commercial shelf manager
 - software structure and core components remain the same

IPMC architecture

IPMC software

JTAG module μC LM3S9B92 (Texas Instruments) & FPGA Spartan-6 (Xilinx)

IPMC module

IPM Controller

JTAG/USB

IP stack library

JTAG Controller

Board configuration

Monitoring

Ethernet

Hardware library

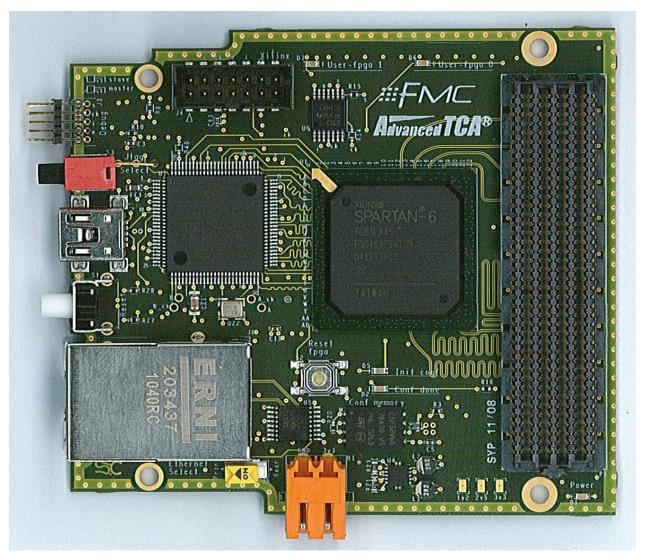
IPMBus to Shelf manager

Development tools: LINUX

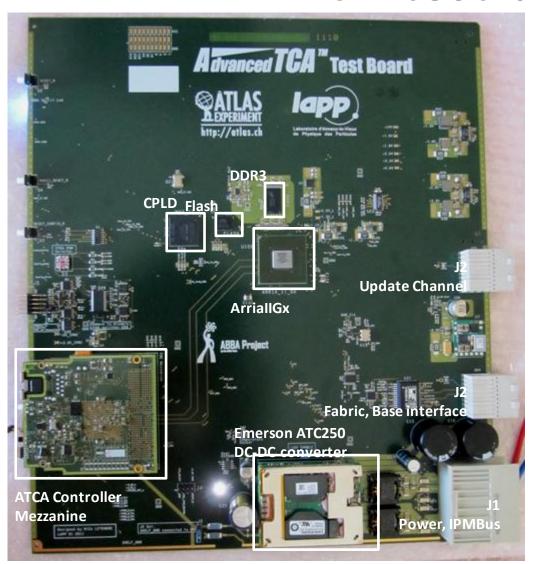
Compiler Gnu GCC: ARM

Debugger GNU GDB & OpenOCD

Programmer T.I


User environment

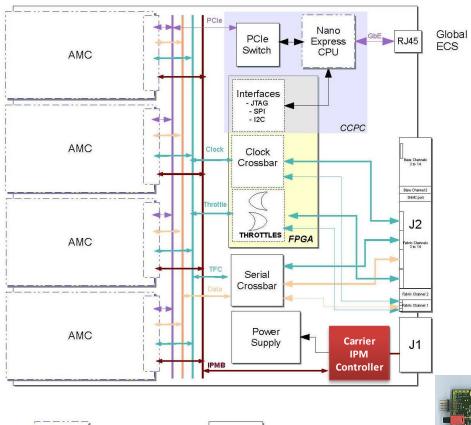
Web interface


TCP/IP client interface

File server (boot and board config.)

IPMC developments

ATCA test board

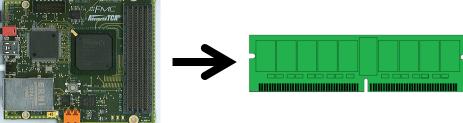

FPGA building block

- Boot from CPLD & parallel Flash
- Communications with DDR3 & Flash

ATCA CTRL Mezzanine:

- IPM Control through IPM Bus
 - => Communication with Shelf Mgr
- ATCA power supplies management
 - => Hot swap (handle switch)
 - => Enable DC/DC
- Alarm/failure diagnostic
- Board configuration through
 Ethernet
 - => Firmware upload
 - => filtering coefficient upload
 - => Sensor reading...

generic ATCA carrier board



ATCA Carrier

courtesy: J-P. Cachemiche, CPPM

Mezzanine Card

- PICMG AMC.0 implementation
- more compact electronics design
- IPMI separated from board slow control

summary

- IPMI spec is a huge quantity of information but is not that complicated to implement
- IPMI software is totally independent from slow control
- the core code is portable and easily tunable
- code is extensively tested for robustness
- a more compact version of the IPM Controller is being designed for common developments for LHCb with the CPPM