

Light Barrier Test Analysis

Michael Reh 15 Aug 2022 University of Colorado Boulder Michael.Reh@colorado.edu

Looking at the Data

- Data comes pre-packaged in .daq files
 - Consist of data packets for individual hits
 - No ADC waveform vs time
 - We receive pre-packaged info from hits like hit timing, signal amplitude, channel number, etc.

Data Overload

Data comes in 32-bit chunks that is bit-manipulated to extract relevant information in the unpacking procedure, e.g.

```
uint32_t MDdataWordBM::GetSpillTime() {
    if (IsValid()) return ( (*(uint32_t*)(_data) & SpillTimeMask ) >> SpillTimeShift );
    return 0;
}
```

- For the runs with no light barrier, the data stream cannot keep up with the input, and so some of the bits get missed, leading to data corruption
- All of the runs with no light barrier can have some of their data unpacked, but all eventually seg fault when the stream gets to a bad read
- From the bit I was able to unpack, there appears to be at least an order of magnitude more hits in these runs than those with some light barrier

Other Baselines

- Since we do not have a baseline with no light barrier to compare against, we tried something different at Penn
 - Collected data with both light barriers applied to the detector
 - Hope that combination of the CU polyester sheet and UPenn black sheet will provide a baseline that is at least as strong of a shield as either of the individuals
 - If the individual light shields are comparable to using both, that is a positive sign

CU Polyester Light Barrier

Original Hit Count Plots

"Hits" defined in DAQ, presumably by the ADC waveform increasing beyond some threshold

Trying to Use PE Counts

ADC amplitudes are converted to PE in the code using the following equation:

 $\frac{ADC - Gain_Floor}{Gain_Conversion}$

Each channel has its own gain values to calibrate, so it is possible the detector was not accurately calibrated prior to our data runs

New Plan: Look at ADC

XY ADC Counts: Lights On Trials

XY ADC Counts: Lights Off Trials

XZ ADC Counts: Lights On Trials

XZ ADC Counts: Lights Off Trials

YZ ADC Counts: Lights On Trials

YZ ADC Counts: Lights Off Trials

Light Leak?

- Significantly enhanced signal in XZ edge channels; only appears when lab lights are on
- Possible that the electrical tape seal was imperfect for one of the edges, allowing some light leak.
 - Polyester did puff out on some of the faces, and attaching was difficult
- If we consider this as a light leak, others should be easily identifiable!

Light Leak?

Effect of the Felt Rings

- If we reference the edge leak as a standard, there is nothing on this scale near SAMTEC connection site
- Would see some enhanced signal in the central MPPCs for no felt runs with lights on

Effect of the Felt Rings – XY

* NOTE: If outlier channels were true leaks, we would expect a discrepancy between the lights on and lights off trials

Effect of the Felt Rings – XZ

* NOTE: If outlier channels were true leaks, we would expect a discrepancy between the lights on and lights off trials

Effect of the Felt Rings – YZ

Conclusions

- There is no light leak near the SAMTEC connectors on the scale of the light barrier edge leak
 - The felt rings around the connectors may not be necessary
- A light leak was visible near the edge of one polyester sheet
 - Characterized by significantly amplified ADC signal (~10x higher) that only appears in runs with the lab lights on
 - Will have to be more careful when installing the light barrier
 - Ensure it lies (mostly) flat
 - Ensure no light gaps at the edges
- Overall, the CU light barrier functions at least as well as the black sheet used for the US-Japan prototype at UPenn

Backup

Test Configurations

10 Test Configurations:

Run #	Room Lights	Polyester Sheet	Felt Rings	Penn Light Barrier	No Light Barrier
202 (206)	On (Off)	Off	Off	Off	Polyester Only
211 (212)	On (Off)	On	Off	Off	
215 (216)	On (Off)	On	Off	On	Polyester + Black Sheet
219 (220)	On (Off)	On	On	Off	
221 (223)	On (Off)	Off	Off	On	Polyester + Felt

Black Sheet Only

** Room lights off ≠ completely dark in the room.Some light from computer monitors (needed to be on to check

for data collection errors) and from readout crates **

CU LB vs Upenn Black Sheet – XY

CU LB vs Upenn Black Sheet – XZ

CU LB vs Upenn Black Sheet – YZ

