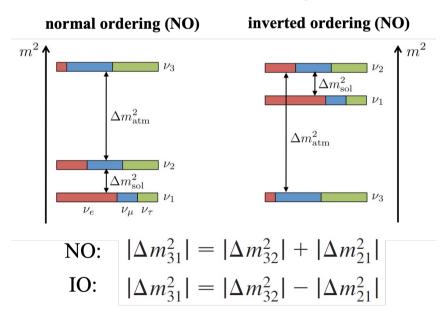

Jiangmer

The physics prospects and current status of JUNO

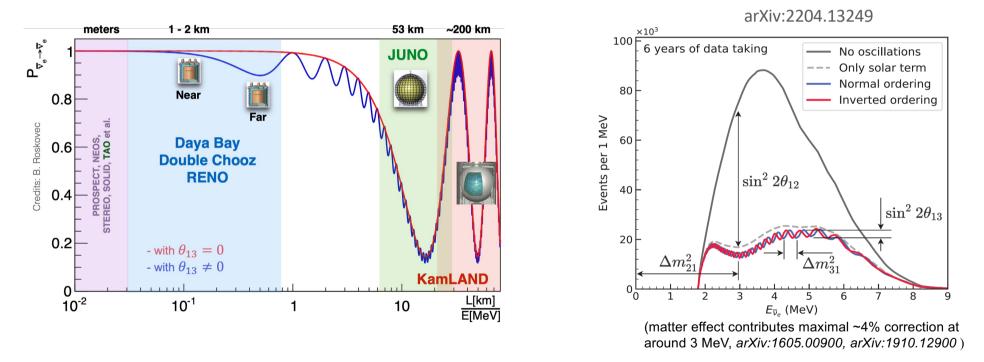
Bei-Zhen Hu On behalf of JUNO colaboration


Neutrino Oscillation

1

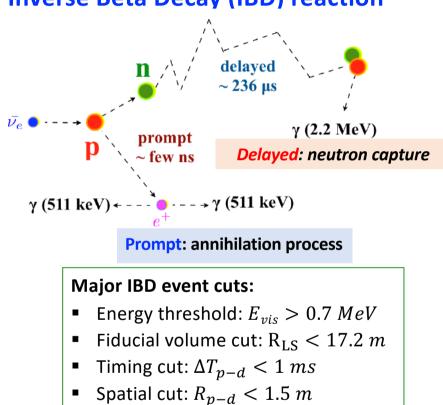
Open Questions

- Solving the Mass Hierarchy problem is a key for the open questions in neutrino physics:
 - \succ Roadmap for $0\nu\beta\beta$ experiments
 - > Understanding the mass origin and neutrino mixing in theory
 - \succ Nucleosynthesis in supernova, neutrino mass scale, δ_{CP} ,



Mass Hierarchy

Neutrino Oscillation


$\overline{v_e}$ survival probability:

$$P_{\bar{\nu}_e \to \bar{\nu}_e} = 1 - \frac{\cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}}{\cos^2 \theta_{13}} - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$$

Neutrino Mass ordering determined by the fine oscillation pattern in reactor neutrino spectrum
 First experiment to observe solar and atmospheric neutrino oscillation modes simultaneously

Cosmic muon veto cuts

Inverse Beta Decay (IBD) reaction

Accidentals are mainly coming from radiogenic elements such as $^{238}U/^{232}Th/^{40}K \rightarrow$ material screening strategy achieved for details, see JHEP 11 (2021) 102

10

12

--- ⁹Li⁸He

¹³C(α,n)¹⁶O Global Reactors ____ Atmospheric N

Geoneutrinos

/isible Energy (Me)

IBD Signal IBD + residual BG

8

JUNO expected spectrum: Visible energy spectrum of

6

Visible Energy [MeV]

the survival reactor $\overline{\nu_{e}}$

~47 $\overline{\nu_e}$ evt/day (assuming ~82% efficiency) and ~4.1 bckg evt/day ٠

0.22F

0.2

'day'

0.14 0.12 0.05 0.02 0.02 0.02

0 1

0.06 arXiv:2204.13249

0.08

0.04

0.02

Background contribution from 7 types of sources

Background	Rate (day^{-1})
Geoneutrinos	1.2
World reactors	1.0
Accidentals	0.8
⁹ Li/ ⁸ He	0.8
Atmospheric neutrinos	0.16
Fast neutrons	0.1
$^{13}\mathrm{C}(\alpha,\mathbf{n})^{16}\mathrm{O}$	0.05

Requirements for precision

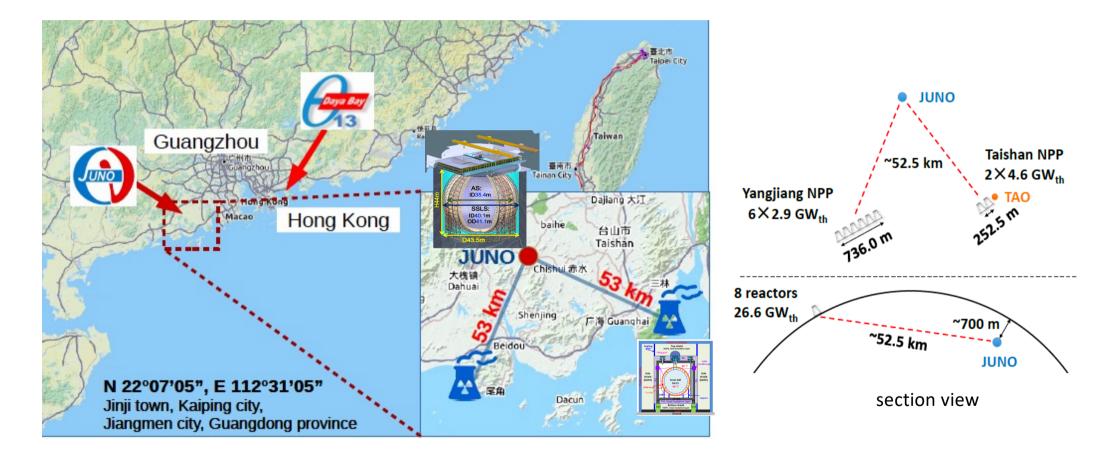
Large statistics

- ✓ Large target mass (20 kton LS)
- ✓ Powerful reactor source (26.6 GWth)

High energy resolution

- ✓ Large PMT coverage (78%)
- ✓ Highly efficient PMTs (PDE ~30%)
- \checkmark High photon yield, highly transparent LS

Small shape/scale uncertainties

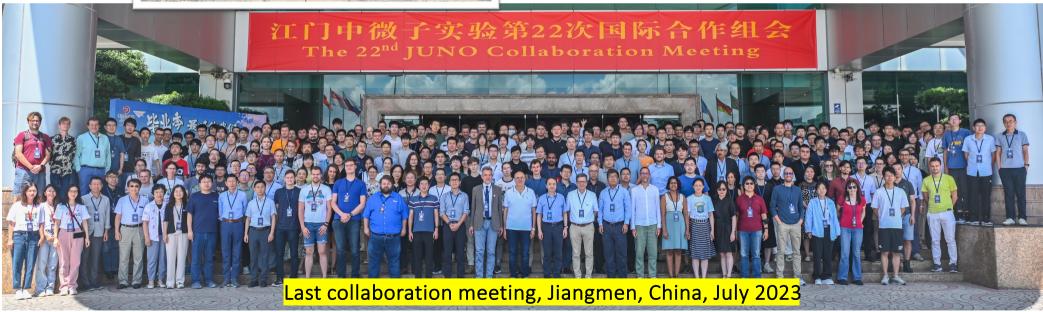

- \checkmark TAO satellite detector
- \checkmark Redundant calibration system

Low background

- \checkmark Good overburden (~650 m)
- ✓ Highly efficient veto system (>99.5%)
- \checkmark High sensitivity material screening
- \checkmark Careful control of installation cleanliness

JUNO: Energy Resolution 3% @ 1MeV	a a a a a a a a a a a a a a a a a a a			
	KamLAND [2]	Borexino [3]	SNO+ [4]	JUNO
Target Mass [kilotons]	1	0.3	0.78	20
Number of PMTs	1900	2200	10,000	18,000 + 26,000
PMT Coverage	~34%	~30%	~50%	~80%
Light Collection [photoelectrons/MeV]	~250	~450	~520	>1300

Jiangmen Underground Neutrino Observatory



= 74 institutes > 700 collaborators

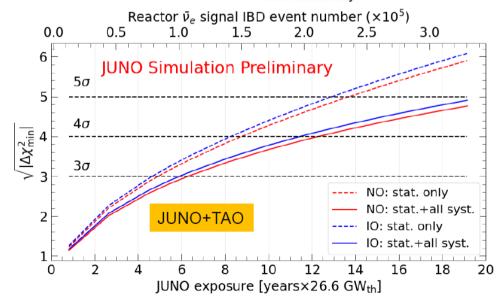
Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	SYSU	Germany	U. Mainz
Belgium	Universite libre de Bruxelles	China	Tsinghua U.	Germany	U. Tuebingen
Brazil	PUC	China	UCAS	Italy	INFN Catania
Brazil	UEL	China	USTC	Italy	INFN di Frascati
Chile	PCUC	China	U. of South China	Italy	INFN-Ferrara
Chile	SAPHIR	China	Wu Yi U.	Italy	INFN-Milano
Chile	UNAB	China	Wuhan U.	Italy	INFN-Milano Bicocca
China	BISEE	China	Xi'an JT U.	Italy	INFN-Padova
China	Beijing Normal U.	China	Xiamen University	Italy	INFN-Perugia
China	CAGS	China	Zhengzhou U.	Italy	INFN-Roma 3
China	ChongQing University	China	NUDT	Pakistan	PINSTECH (PAEC)
China	CIAE	China	CUG-Beijing	Russia	INR Moscow
China	DGUT	China	ECUT-Nanchang City	Russia	JINR
China	Guangxi U.	China	CDUT-Chengdu	Russia	MSU
China	Harbin Institute of Technology	Czech	Charles U.	Slovakia	FMPICU
China	IHEP	Finland	University of Jyvaskyla	Taiwan-China	National Chiao-Tung U.
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Taiwan U.
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National United U.
China	Nanjing U.	France	CPPM Marseille	Thailand	NARIT
China	Nankai U.	France	IPHC Strasbourg	Thailand	PPRLCU
China	NCEPU	France	Subatech Nantes	Thailand	SUT
China	Pekin U.	Germany	RWTH Aachen U.	U.K.	U. Warwick
China	Shandong U.	Germany	TUM	USA	UMD-G
China	Shanghai JT U.	Germany	U. Hamburg	USA	UC Irvine
China	IGG-Beijing	Germany	FZJ-IKP		

Reactor neutrino oscillation Chin.Phys.C 46 (2022) 12, 123001 Solar neutrino oscillation Chin.Phys.C 45 (2021) 2, 023004 Atmospheric neutrino flux Eur.Phys.J.C 81 (2021) 10 Diffuse supernova neutrinos JCAP 10 (2022) 033 Proton Decay arXiv: 2212.08502 and others

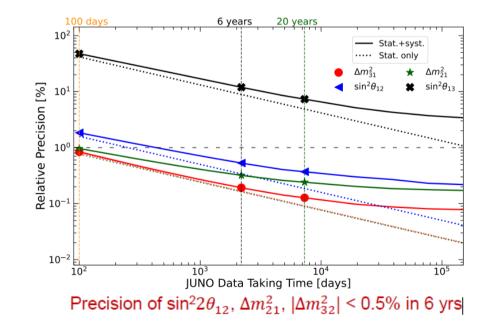
Reactor anti-v

Atmospheric v

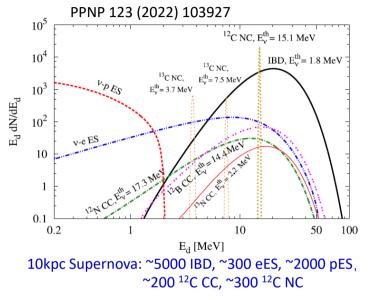
Several / day

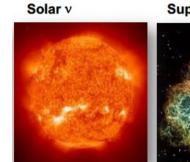


y Solar v


In 6 years:

~60 / day


⁸B: ~50/day CNO: ~1000/day ⁷Be: ~10000/day



Determine neutrino mass ordering at 3σ
 Precision of sin² ϑ_{12} , Δm²₃₁, Δm²₂₁ < 0.5%

⁸B: ~50/day CNO: ~1000/day 7Be: ~10000/day

Geoneutrinos

Core Collapse SN @ 10 kpc: thousands in few sec.

Diffuse SN signal: few / year

~400 / year

Proton decay

+

Neutrino magnetic moment Sterile neutrinos Non standard interactions Lorentz invariance

New

physics

Physics	Sensitivity	
Supernova Burst (10 kpc)	\sim 5000 IBD, \sim 300 eES and \sim 2000 pES of all-flavor	
DSNB	3σ in 3 yrs	
Solar neutrino	Measure Be7, pep, CNO simultaneously, B8 flux	
Atmospheric neutrino	0.7-1.4 σ for NMO in 6 yrs. Boost the reactor result	
Nucleon decays ($p \rightarrow \overline{\nu}K^+$)) 8.3×10 ³³ years (90% C.L.) in 10 yrs	
Geo-neutrino	~400 per year, 5% measurement in 10 yrs See Cristobal's a	talk

1 0

JUNO Detector

VETO System

Top tracker

- Precision muon tracking
- 3 plastic scintillator layers
- Covering half of the top of the water pool

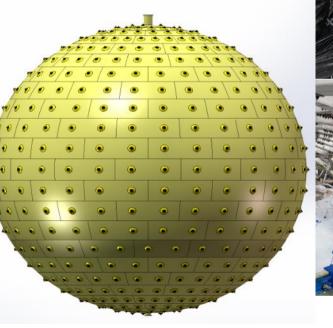
Water Cherenkov veto pool

- 2400 20" PMTs
- 35 kton ultra-pure water
- Efficiency >99.5%
- Radon control \rightarrow < 0.2 mBq/m³

Compensation coils

- Earth magnetic field <10%
- Necessary for 20" PMTs

Calibration System


- Automatic Calibration Unit (ACU)
- Cable Loop System (CLS)
- Guide Tube Calibration System(GTCS)
- Remotely Operated Vehicles (ROV)

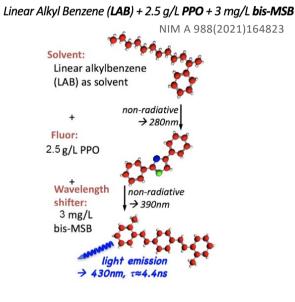
Central detector (CD)

- Optical separation: *Acrylic sphere* (Ø 35.4 m)
- Stainless Steel Latticed Shell (Ø 41.1 m)
- 20 kton Liquid Scintillator
- <u>PMTs</u>: 17612 20" PMTs + 25600 3" PMTs

Acrylic transparency >96%, Radiopurity U/Th/K <1 ppt

Installation of equator layer

Status About half acrylic sphere was finished!


JHEP 03(2021)004

Central Detector (CD) ~ Liquid Scintillator UNO

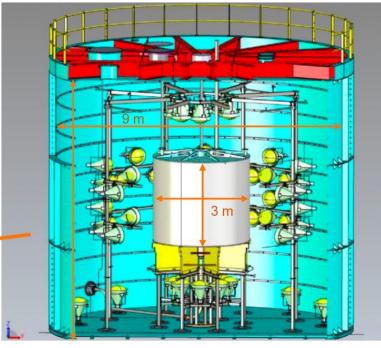
* 20 kt liquid scintillator: LAB based, PPO as fluorescence, bis-MSB as wavelength shifter

- High light yield: >1345* p.e./MeV
- Long attenuation length: > 20 m @430m
- Extremely high radiopurity •
 - > Full system commissioning will start soon

an industrial scale purification process Ultra PPO UNDERGROUND Pure Chilled bisMSB Mixin LAB from Storage Tank Water Water To Filling Station Strippi **Numina Column** LS Tank Hot-Oil Ultra Purity Water

Online Scintillator Internal Radioactivity Investigation System (OSIRIS)

A 20-t detector to monitor radiopurity of LS before and during


filling to the central detector

- ✓ Few days: U/Th (Bi-Po) ~ 1×10^{-15} g/g (reactor baseline case)
- ✓ 2~3 weeks: U/Th (Bi-Po) ~ 1 × 10^{-17} g/g (solar ideal case)
- ✓ Other radiopurity can also be measured: ¹⁴C, ²¹⁰Po and ⁸⁵Kr

Under commissioning now.

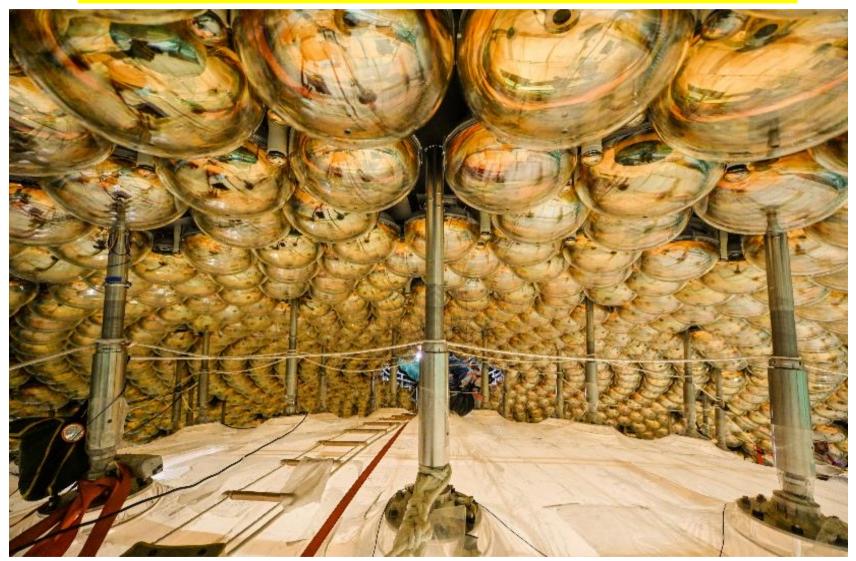
Eur.Phys.J.C 81 (2021) 11, 973

Central Detector (CD) ~ **Photomultiplier Tubes**

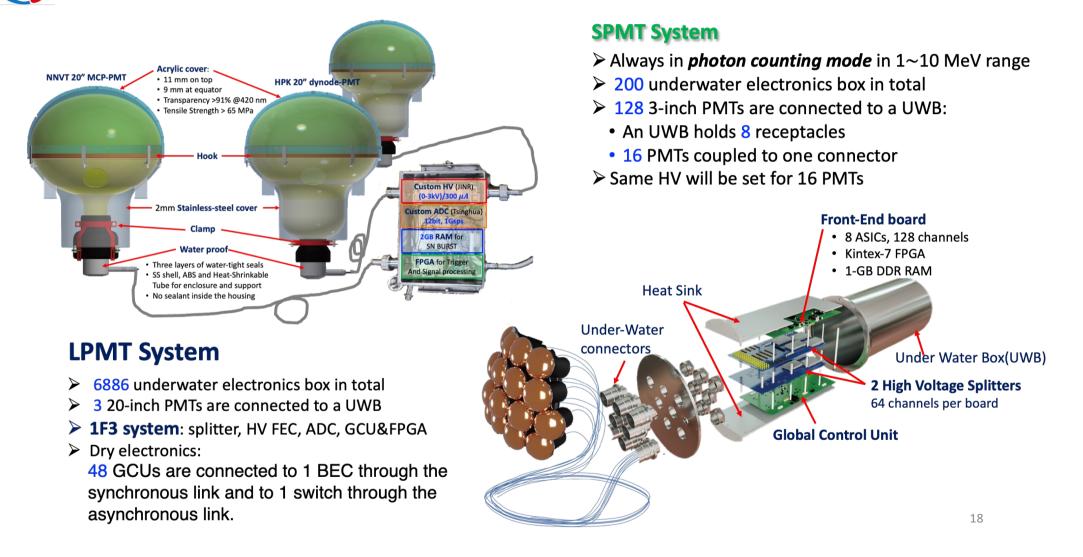
- All has been produced, tested, and potted.
- 20,012 20-inch PMTs: 15,012 MCP (2,400 for veto) and 5,000 dynode

→ 17612 20" PMTs Looking inside → installed ~6000 (~34%)

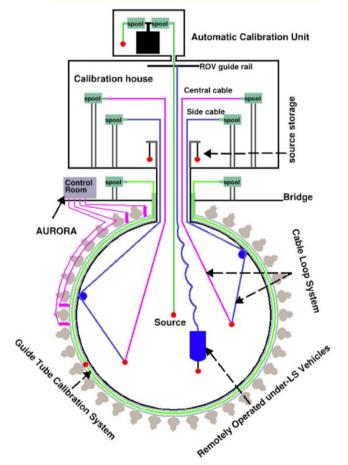
25,600 3-inch PMTs →installed ~9293 (~36.3%)



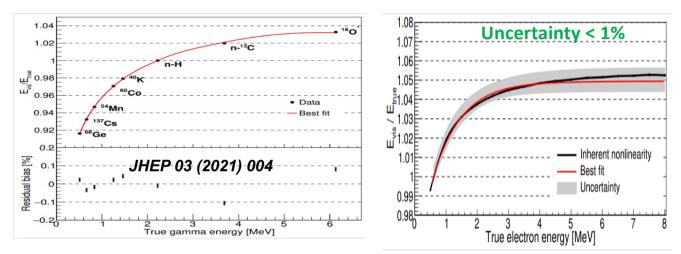
		LPMT (20)-inch)	SPMT (3-inch)	
		lamamatsu	NNVT	HZC	
Quantity		5000	15012	25600	
Charge Collection		Dynode	МСР	Dynode	
Photon Detection Efficiency		28.5%	30.1%	25%	
Bare		15.3	49.3	0.5	
Potted		17.0	31.2	0.5	
Transit Time Spread (σ) [ns]		1.3	7.0	1.6	
Dynamic range for [0-10] MeV		[0, 100] PEs		[0, 2] PEs	
Coverage		75%	6	3%	
Reference		arXiv: 220	5.08629	NIM.A 1005 (2021) 165347	
	iciency Bare Potted (σ) [ns]	on iciency Bare Potted (o) [ns]	Hamamatsu 5000 Dynode iciency 28.5% Bare 15.3 Potted 17.0 (a) [ns] 1.3 10] MeV [0, 100 759	5000 15012 Dynode MCP 28.5% 30.1% Bare 15.3 49.3 Potted 17.0 31.2 (a) [ns] 1.3 7.0	


MCP: micro-channel plate

~6000 20" PMTs and 9293 3" PMTs are installed


17

Central Detector (CD) – PMT Instrumentation



Calibration System

Full-volume position coverage
 inside JUNO central detector

Complementary for covering entire energy range of reactor neutrinos

Different tools deployed for detector calibration:

- 1D: <u>Automatic Calibration Unit (ACU)</u> → central axis scan
- 2D: <u>Cable Loop System (CLS)</u> → scan vertical planes
 <u>Guide Tube Calibration System (GTCS)</u> → CD outer surface scan
- **3D**: <u>Remotely Operated under-LS Vehicle (ROV)</u> → whole detector scan
- Auxiliary system: Calibration House, Ultrasonic Sensor System (USS) CCD and a unit for researching Online LSc tRAnsparency (AURORA)

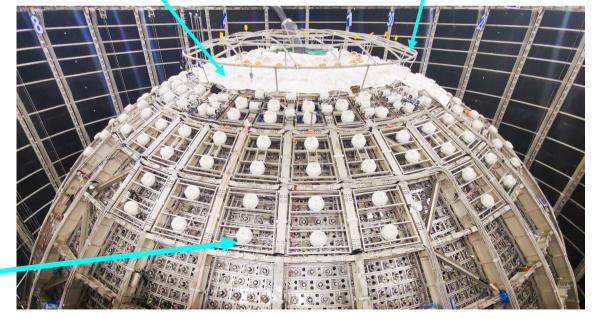
Tasks

Shield rock-related backgrounds Tag & reconstruct cosmic-rays tracks

~650 m rock overburden (1800 m.w.e.) $\rightarrow R_{\mu}$ = 4 Hz in LS, $\langle E_{\mu} \rangle$ = 207 GeV

- Top tracker: OPERA scintillators
 - 3 layers, ~50% coverage on the top

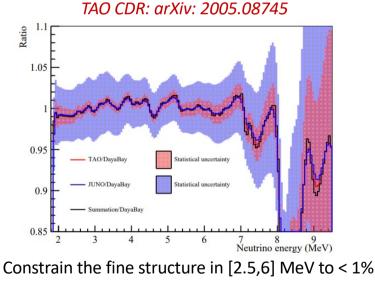
Water Cerenkov detector

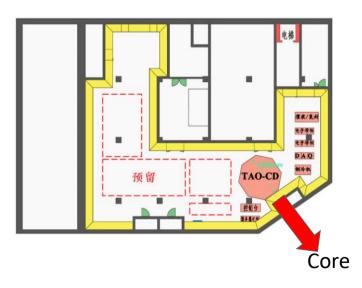

- 35 kton water, 2400 20-inch PMTs, detection efficiency >99.5%
- Keep uniform temp 21°C±1°C
- ²²²Rn < 10 mBq/m³ (w/ micro-bubble system)
- Pool lining: HDPE
- Earth magnetic field compensation coil

~500 veto PMTs installed

Tyvek reflective film installation started

Earth magnetic shielding coils installation: 6 coils installed (32 coils in total)

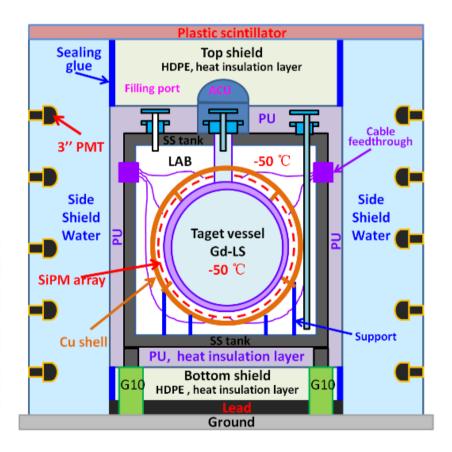

JUNO-TAO Taishan Antineutrino Observatory (TAO)


• A satellite detector of JUNO

• at 30 m from the core(4.6 GW), in a hall at -10 m underground

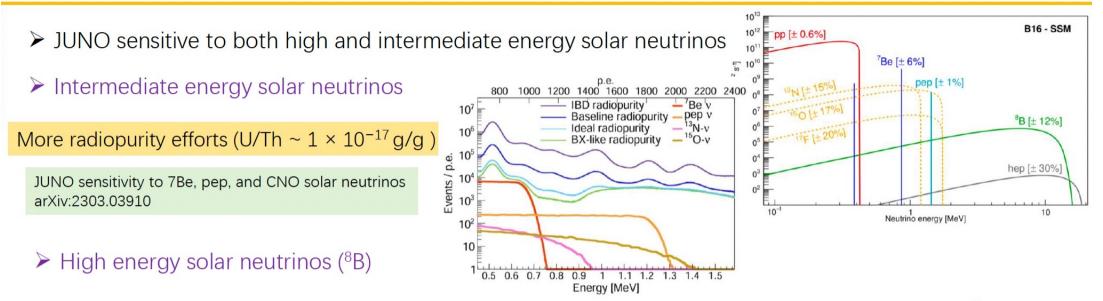
• Measure reactor neutrino spectrum

- model-independent reference spectrum for JUNO
- a benchmark for investigation of the nuclear database

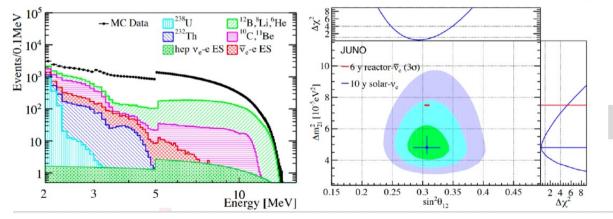

21

- 2.8 ton Gd-LS (1 ton fiducial mass), produced
- 94% coverage of SiPM w/ PDE > 50%, 1^{st} batch received, under testing
- 1.8-m ID acrylic vessel, ready
- SS tank, ready
- Electronics, in production
- Operate at -50 °C (SiPM dark noise)
- To be tested at IHEP, w/ SiPM samples.
- 4500 p.e./MeV \rightarrow < 2% resolution
- Neutron back-to-signal ratio $\sim 2\%$ (JINST 17 (2022) 09, P09024)

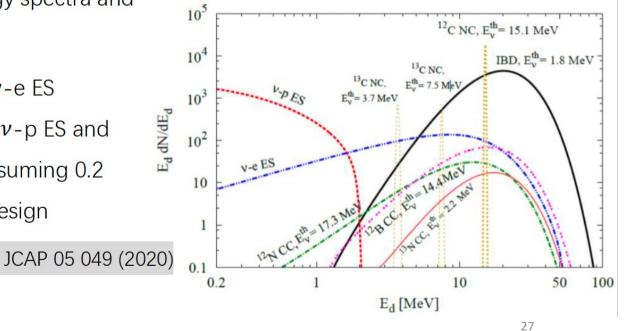
JUNO is motivated to measure the Neutrino Mass Ordering


- 20 kton liquid scintillator
- 3%/sqrt(E) energy resolution
- Advance detector technology
- Rich physics program. World-leading studies on
 - Precision measurement of oscillation parameters, Supernova v, DSNB, Geo-v, solar v, proton decay, ...
 - Future JUNO-0vββ

JUNO construction has entered its final stage. Data taking is expected in 2024!


- Short-baseline experiment TAO
 - High energy solution measurement of reactor neutrino spectrum
 - JUNO reference spectrum and benchmark for nuclear database

Solar neutrinos


• Model independent measurement of ⁸B solar neutrino flux (~5%) and oscillation parameters $\sin^2\theta_{12}$, Δm_{21}^2

Chin. Phys. C 45 (2021) 2, 023004

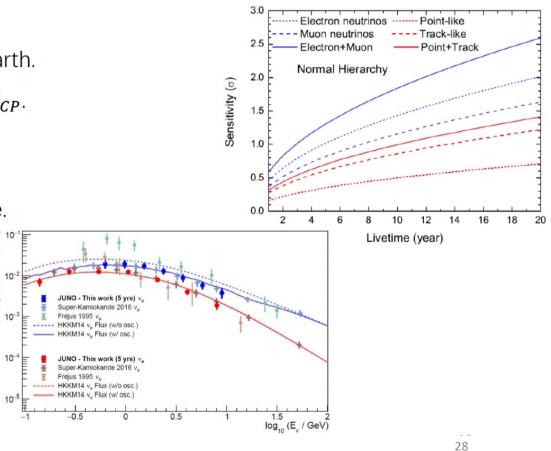
Supernova neutrinos(SN)

- A high-statistics detection of neutrinos from a galactic SN will provide us with precious information about the explosion mechanism and intrinsic properties of neutrinos themselves.
- > JUNO has excellent capability of detecting all flavors of the O(10 MeV) postshock neutrinos.
- Determination of the time evolution, energy spectra and flavor contents of SN neutrinos
- > Main detection channel: IBD, ν -p ES, and ν -e ES
- Real-time detection of ~5000 IBD, ~1000 v-p ES and ~4000 v-e ES events for a SN @10kpc, assuming 0.2
 MeV threshold and with special triggers design

Atmospheric neutrino

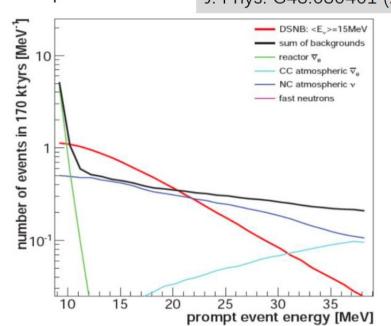
JUNO NMO sensitivity from atmospheric neutrinos is complementary to that from the reactor neutrino results.

Φ [GeV cm⁻² s⁻¹ sr¹]

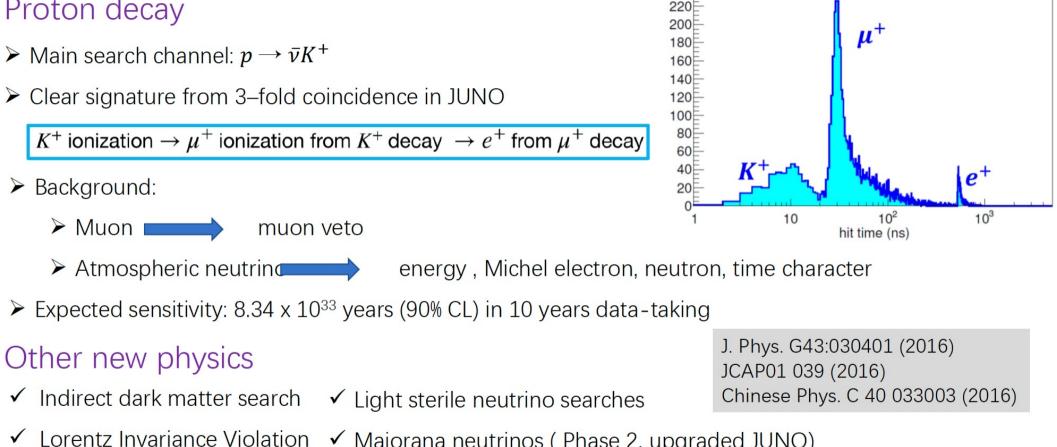

²LI

- Exploit matter effects for neutrinos crossing the Earth.
- > Contributions to the sensitivity of NMO, θ_{23} and δ_{CP} .

J. Phys. G: Nucl. Part. Phys. 43 030401 (2016)


- Promising potential towards the low energy range.
 - \checkmark Atmospheric ν spectrum measurement.

Eur. Phys. J. C (2021) 81:887


Diffuse Supernova Neutrino Background (DSNB)

- > The integrated neutrino flux from all past core-collapse events in the visible universe forms the diffuse supernova neutrino background (DSNB)
- \blacktriangleright Provide information: the red-shift dependent supernova rate, average SN neutrino energy spectrum and the fraction of black hole formation in core-collapse SNe J. Phys. G43:030401 (2016)
- Detection channel: IBD
- Background >
 - \checkmark $\overline{v_e}$ from reactor and atmospheric neutrino
 - Visible energy range (10, 30) MeV
 - atmospheric neutrino NC \checkmark
 - PSD helps to suppress
 - cosmogenic isotopes/fast neutron \checkmark
 - Muon veto

Exotic process

Proton decay

✓ Majorana neutrinos (Phase 2, upgraded JUNO)