Low Energy Excess Search and **Constraints on eV-Scale Sterile Neutrino Oscillations at MicroBooNE**

Sergey Martynenko (Brookhaven National Laboratory) **On behalf of MicroBooNE collaboration**

Standard Model

Short-Baseline Anomalies

- $\mathbf{M} \in \mathbf{R}$ Reactor Neutrino Flux \rightarrow Initially found issue of theory by Daya Bay experiment / Resolved with new input data to flux calculation
- \Box Neutrino-4 Reactor Spectra \rightarrow In tension with other
- VSBL reactor ν experiments
- \Box The Gallium Anomaly \rightarrow BEST observed similar results \Box The LSND Anomaly \rightarrow JSNS² will perform direct test $\Box MiniBooNE LEE \rightarrow Tested with MicroBooNE$

10

Bugey-3

Bugey-4

Chooz

1.10

1.00

0.90

0.80

0.70

 $= N_{\rm exp}/N_{\rm cal}$

Daya Bay

Phys.Lett.B 829 (2022), 137054

Double Chooz - Krasnoyarsk

 10^{2} L [m] RENO

- MiniBooNE (2002-2019) observed the LEE of electromagnetic events with 4.8σ significance
- MiniBooNE Cherenkov detector:
 - unable to distinguish between electrons and photons
 - unable to detect hadronic final-state particles below Cherenkov threshold
- Is excess due to electron neutrinos appearing in the muon neutrino beam? Or photons? Or some other electromagnetic activity?

- at Fermilab

Liquid Argon Time Projection Chamber (LArTPC)

Cathode

Plane

Charged particle enters detector

Scintillation light emitted by excited Ar, detected by PMTs

Ionization electrons drift to anode plane [2 induction wire planes and 1 collection]

Liquid Argon Time Projection Chamber (LArTPC)

- Capable of identifying different species of particles and reconstructing 3D images with fine-grained information
- Neutrino vertex
- Particle flow (mother-daughter relationship)
- Track (μ , π , p etc.) vs shower (e, γ EM cascade)
- e / γ (e+e- pair production) separation
 - 1. Gap between shower start point and ν vertex
 - 2. dE/dx two times difference (1 MIP vs 2 MIPs)

eLEE Search [electron Low Energy Excess]

Three independent analyses using different reconstruction paradigms and targeting different final states:

1. Quasi-elastic kinematics:1e1p, Deep-learning-based reco.

Deep Learning: PRD 103, 052012 (2021) Pandora: EPJC 75, 439 (2015) WireCell: JINST 13, 05032 (2018)

eLEE Search [electron Low Energy Excess]

Three independent analyses using different reconstruction paradigms and targeting different final states:

1. Quasi-elastic kinematics:1e1p, Deep-learning-based reco.

2. MiniBooNE like-final state: $1eNp0\pi$ and $1e0p0\pi$, Pandora-based reco.

Deep Learning: PRD 103, 052012 (2021) Pandora: EPJC 75, 439 (2015) WireCell: JINST 13, 05032 (2018)

eLEE Search [electron Low Energy Excess]

Three independent analyses using different reconstruction paradigms and targeting different final states:

- 1. Quasi-elastic kinematics:1e1p, Deep-learning-based reco.
- 2. MiniBooNE like-final state:1eNp0pi and 1e0p0pi, Pandora-based reco.
- 3. Inclusive 1eX final states, WireCell reconstruction

Deep Learning: PRD 103, 052012 (2021) Pandora: EPJC 75, 439 (2015) WireCell: JINST 13, 05032 (2018)

eLEE Results [by final state]

- Model : an energy-dependent enhancement of intrinsic ν_{ρ} events in the beam at low energy \rightarrow derived from MiniBooNE with one normalization parameter "x"
- No observation of ν_e candidate excess in low energy region; except for the low ν_{e} purity $1e0p0\pi$ channel
- Single-electron-alone explanation for MiniBooNE is ruled out at >97% CL

Events/100 MeV

gLEE Search [single photon production]

- Search for single photons from NC Δ radiative decays \rightarrow predicted to be one major source of single-photons at these energies
- It's a known background, that was not constrained directly by the MiniBooNE experiment
- Enhancement in $NC \Delta \rightarrow N\gamma$ (N=p,n) with a factor of x3.18 gave good agreement with the observed LEE in various phase space
- Four channel fit for the analysis:
 - Two $NC \ \Delta \rightarrow N\gamma$ reach single photon selections

Two high-statistics $NC \ \pi^0$ reach two-photon selections

PRL 128, 111801 (2022)

<u>gLEE Results</u>

Disfavor x3.18 $NC \Delta \rightarrow N\gamma$ as an interpretation of the MiniBooNE LEE at 94.8% CL

PRL 128, 111801 (2022)

14

More Photon Search Coming!

- $NC \ \Delta \rightarrow N\gamma$ cross check using $1\gamma 0p$ and $1\gamma Np$ channels
 - Uses alternative reconstruction
 - More sensitive to the $1\gamma 0p$ channel
- Coherent-like single-photon production search builds on the previous $1\gamma 0p$ result
 - Looking for forward-going photons with no hadronic activity.
 - Closely follows the expected LEE signal. lacksquare
- Inclusive single photon $(1\gamma X)$ is searching more generally for "single photon-like" final states
 - No dependence on model or requirement on hadronic activity.

BSM models

- Many BSM scenarios predict overlapping e^+e^- final states that mimic a single shower topology \rightarrow could explain the LEE
- Higgs Portal Scalar and Heavy Neutral Lepton searches already published
- Additional Higgs Portal Scalar, Heavy Neutral Lepton, Dark Trident and Millicharged Particles searches are ongoing

MicroBooNE BSM Searches: Phys. Rev. D 101, 052001 (2020)Phys. Rev. Lett. 127, 151803 (2021)Phys. Rev. D 106, 092006 (2022)

3(active) + 1(sterile) Neutrino Oscillation Framework

- •
- The effective mixing angles $\theta_{\alpha\beta}$ for short-baseling • $P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} + (-1)^{\delta_{\alpha\beta}} \cdot \sin^2 2\theta_{\alpha\beta} \cdot s$ $\sin^2 2\theta_{ee}$ ν_e disappearance ($\nu_e \rightarrow \nu_e$):
 - $\sin^2 2\theta_{\mu}$ ν_{μ} disappearance $(\nu_{\mu} \rightarrow \nu_{\mu})$: $\sin^2 2\theta_{\mu}$ ν_e appearance $(\nu_{\mu} \rightarrow \nu_e)$:
 - appearance $(\nu_e \rightarrow \nu_\mu)$ is ignored because of tiny $\frac{\nu_e \text{ flux rate}}{\nu_\mu \text{ flux rate}} \sim 0.005$

The PMNS matrix is extended to 4x4 unitary matrix, and is parameterized as following $U_{PMNS} = R_{34}(\theta_{34}, \delta_{34}) R_{24}(\theta_{24}, \delta_{24}) R_{14}(\theta_{14}, 0) R_{23}(\theta_{23}, 0) R_{13}(\theta_{13}, \delta_{13}) R_{12}(\theta_{12}, 0)$

ne oscillations are defined below

$$\sin^{2}\left(1.267 \frac{\Delta m_{41}^{2} (eV^{2})L(m)}{E(MeV)}\right)$$

$$e = \sin^{2} 2\theta_{14}$$

$$\mu = 4\cos^{2} \theta_{14} \sin^{2} \theta_{24} (1 - \cos^{2} \theta_{14} \sin^{2} \theta_{24})$$

$$e = \sin^{2} 2\theta_{14} \sin^{2} \theta_{24}$$

In MicroBooNE analysis, the above three oscillation effects are applied to all v_e and v_{μ} events; the v_{μ}

Feldman-Cousins approach

MicroBooNE 3+1 Exclusion Results $[\Delta m_{14}^2 \text{ vs } \sin^2 2\theta_{\mu e}]$

• 2D profiled (on $sin^2\theta_{24}$) result : full 3+1 analysis at each point in the parameter space

 $[\nu_{\mu} \rightarrow \nu_{e}, \nu_{e} \rightarrow \nu_{e}, \nu_{\mu} \rightarrow \nu_{\mu}]$

• ν_e appearance-only : more stringent limit. However, it is physically not allowed in the 3+1 framework. (non-zero ν_{ρ} appearance requires both ν_{ρ} and ν_{μ} disappearance)

$$[\nu_{\mu} \rightarrow \nu_{e}]$$

MicroBooNE 3+1 Exclusion Results $[\Delta m_{14}^2 \text{ vs } \sin^2 2\theta_{ee}]$

• 2D profiled (on $sin^2\theta_{24}$) result : full 3+1 analysis at each point in the parameter space

$$[\,\nu_{\mu} \rightarrow \nu_{e}\,,\,\nu_{e} \rightarrow \nu_{e}\,,\nu_{\mu} \rightarrow \nu_{\mu}\,]$$

• ν_e disappearance-only : more stringent limit corresponding to a fixed $sin^2\theta_{24} = 0 \ [\nu_{\rho} \rightarrow \nu_{\rho}]$

Degeneracy of Oscillation Parameters

Observed ν_e events are a combination result of ν_o appearance and disappearance:

$$N_{\nu_{e}} = N_{\text{intrinsic }\nu_{e}} \cdot P_{\nu_{e} \to \nu_{e}} + N_{\text{intrinsic }\nu_{\mu}} \cdot P_{\nu_{\mu} \to \nu_{e}}$$
$$= N_{\text{intrinsic }\nu_{e}} \cdot \left[1 + (R_{\nu_{\mu}/\nu_{e}} \cdot \sin^{2}\theta_{24} - 1) \cdot \sin^{2}2\theta_{14}\right]$$

- Degeneracy when $sin^2\theta_{24}$ approaches *R* (the ratio of beam intrinsic ν_e and ν_μ flux):
- Sensitivity/exclusion limits are much worse near degeneracy point
- BNB and NuMI beams have different degeneracy points:
 - ~0.005 for BNB [on-axis with baseline ~470m]
 - ~0.04 for NuMI [off-axis with baseline ~680m]

Combination of two beams can break degeneracy!

MicroBooNE 3+1 Sensitivity Results by using BNB+NuMI

- Sensitivity is significantly improved (~ factor of 2) when combining both BNB and NuMI (mainly due to degeneracy mitigation)
- BNB+NuMI data results are expected to be sensitive to the Gallium/Neutrino-4 results, and LSND results

SBN Program

- The SBN program consists of three LArTPC detectors located in the BNB at Fermilab.
 - SBND [launching soon], MicroBooNE, and ICARUS [taking data].
- Goals:
 - New physics \rightarrow particularly eV-scale sterile neutrinos
 - Detailed studies of neutrino-nucleus interactions at the GeV energy scale
 - Advancement of the liquid argon detector technology \rightarrow the DUNE/LBNF longlacksquarebaseline neutrino experiment in the next decade

Summary

- MicroBooNE was designed to test the electromagnetic nature of the MiniBooNE anomalous excess
- No excess of single photons or single electrons was observed so far
- Full 3+1 oscillation analyses were carried out to interpret the MicroBooNE eLEE results under a sterile neutrino oscillation hypothesis:
 - The data (50% BNB total dataset) was found to be consistent with three-flavor hypothesis and exclusion limits were calculated using a frequentist approach
 - Unitizing both BNB and NuMI data, the 3+1 analysis will be sensitive to Gallium/Neutrino-4 and LSND results
- Search for BSM models involving electron-positron pair production is ongoing O

Thank you!

Back up

eLEE Model [electron Low Energy Excess]

- Assumption : an energy-dependent enhancement of intrinsic ν_{ρ} events in the beam at low energy
- Empirical eLEE model is derived from MiniBooNE, by unfolding detector response, acceptance, efficiency
- One normalization parameter "x" is built in the model Events/I

MiniBooNE **x**: 1±0.08 (stat.) 1±0.21 (full)

eLEE Results [single bin]

- No observation of ν_e
 candidate excess in low
 energy region; except
 for the low ν_e purity
 1e0p0π channel
- Single-electron-alone explanation for MiniBooNE is ruled out at >97% CL

el	Reconstruction	Efficiency	Purity	Data Ev
e1p	Deep Learning	6.6%	75%	25
)π	Pandora	9%	43%	34
0π	Pandora	15%	80%	64
1eX	WireCell	46%	82%	606

MicroBooNE data

BNB/NuMI fluxes

Inclusive 1eX analysis: <u>Phys. Rev. D105, 112005 (2022)</u> similar constraint procedure used in other two analyses

32

Phys. Rev. Lett. 130, 011801 (2023)

10⁻¹

