Recent results on hadron spectroscopy

Beijiang Liu

Institute of High Energy Physics, Chinese Academy of Sciences

42nd International Symposium on Physics in Collision (PIC 2023), Chile

Hadrons

- Hadrons: complex building block of the visible universe
- Emergence of hadron structure
 - How are hadrons formed from quarks?
 - What is the origin of confinement?
 - How is the mass of hadron generated in QCD?
 - What is the dynamics of effective DoF in hadrons?

courtesy to S. Olsen

Hadron spectroscopy

- Quark model: mesons 📢 baryons 🍓
- Key things to search for: QCD exotics(configurations beyond QM)
 - Strong evidences for multi-quark in heavy quark sector *A new "particle zoo": https://qwg.ph.nat.tum.de/exoticshub/*

Weight sum/(10 MeV/c²)

- Evidence for gluonic excitations remains sparse
- How to identify:
- Manifestly exotic
 - Flavor exotic
 - Spin exotic: $J^{PC} = 0^{--}$, $even^{+-}$, odd^{-+}
- Crypto exotic
 - Supernumerary states
 - Abnormal properties
- + kinematics

Disclaimer: not able to cover all results

Experimental observations

- Conventional cc mesons fit well with potential model
- Abundance of new states above the open charm threshold

Many experiments contribute to it

- Spin assignment: **J**^{PC} = **1**⁺⁺
- Mass is consistent with **m(D⁰) + m(D^{*0})**
- Width is **surprisingly narrow**

Its nature is still under debate!

- → conventional $\chi_{c1}(2^{3}P_{1})$, DD* molecular state, tetraquark, hybrid, vector glueball, or mixed?
- **Prompt production:** X(3872)- $\psi(2S)$ yield ratio from p-p with increasing

multiplicities toward p-Pb and Pb-Pb collisions

• Decay properties: $\rightarrow \omega J/\psi$, $\rho J/\psi$; $\rightarrow \gamma J/\psi$, $\gamma \psi(2S)$

[BESIII PRL 124, 242001 (2020)]

 $E_{\rm I} = (7.04 \pm 0.15^{+0.07}_{-0.08}) + (-0.19 \pm 0.08^{+0.14}_{-0.19})i \text{ MeV}$ $E_{\rm II} = (0.26 \pm 5.74^{+5.14}_{-38.32}) + (-1.71 \pm 0.90^{+0.60}_{-1.96})i \text{ MeV}$

Weinberg's compositeness: Z=1: pure elementary state; Z=0: pure bound (composite) state

 r_e (fm)

 \bar{Z}_A

7

 $-4.1^{+0.9}_{-3.3}^{+2.8}_{-4.4}$

 $0.18^{+0.06}_{-0.17}$ $^{+0.19}_{-0.16}$

 $-3.0^{+1.3}_{-1.5}$

 $0.08^{+0.04}_{-0.03}$

-5.3

0.15 (0.33)

Vector states: Y(4260) → Y(4230)

- Y(4260) firstly seen by BaBar
 - Inconsistent with simple $c\overline{c}$ scenario
 - Candidates for exotics:
 - Hybrid /molecule /Tetraquark ?

$$e^+e^- \rightarrow K^+K^-J/\psi$$
 CPC 46, 111002 (2022)

Data samples from 4.13 to 4.60 GeV(15.6 fb⁻¹)

Y(4230) and Y(4500) observed (29σ / 8σ)

$$e^+e^- \rightarrow K_S K_S J/\psi$$

PRD 107, 092005 (2023)

Data samples from 4.13 to 4.95 GeV(21.2 fb⁻¹)

Evidence for Y(4710) (4.0 σ)

9

How many vectors in charmonium energy region?

 Z_c states

Z_c(4020), 2013

Z_c(4430), 2008

All are observed in π+charmonium ccud

Existence of states with $d \rightarrow s$?

Search for states decay into KJ/ψ , $D_s^*\overline{D}$, $D_s^-\overline{D^*}$

 $I = 1 Z_c(4020)$ near $D^* \overline{D^*}$ threshold

 $I = 1 Z_c(3900)$ near $D\overline{D^*}$ threshold

	5		
State	Mass (MeV/ c^2)	Width (MeV)	Significance
$Z_{cs}(3985)^+$	$3985.2^{+2.1}_{-2.0}\pm1.7$	$13.8^{+8.1}_{-5.2}\pm4.9$	5.3σ
$Z_{cs}(3985)^0$	$3992.2 \pm 1.7 \pm 1.6$	$7.7^{+4.1}_{-3.8}\pm4.3$	4.6 σ

 $I = \frac{1}{2} Z_{cs}(3985)$

Mass (MeV)Width (MeV)Fit fraction (%)
$$\Delta M$$
 (MeV) $3991^{+12}_{-10}{}^{+9}_{-17}$ $105^{+29}_{-25}{}^{+23}_{-23}$ $7.9 \pm 2.5^{+3.0}_{-2.8}$ $-12^{+11}_{-10}{}^{+6}_{-4}$

Structure just above $J/\psi J/\psi$ threshold

٠

Evidence for states in $M(J/\psi\psi(2S))$

PRL 128, 062001 (2022)

Search for P_c in photon production

- Conspicuous structure at open charm thresholds
 - Production mechanism must be understood to interpret data

Beyond hidden-charm: Doubly open-charm tetraquark T_{cc}

> Width: $48 \pm 2^{+0}_{-14}$ keV

Discovery of open-charm tetraquarks with four different flavors [cs $\overline{u}d$]

Flavor partner of $T_{cs0}(2900)$? Multiplets to be revealed in the future

Light QCD exotics

Light QCD exotics

- Strong evidences for multi-quark in heavy quark sector
- However, evidence for gluonic excitations remains sparse
 - Light Flavor-exotic hard to establish
 - Assignment of some SU(3)_{flavor} | $q\overline{q}$ > nonets difficult
- Role of gluons:
 - Gluons mediate the strong force
 - Hadron constituent: Mass? Quantum numbers? ...
 - Gluons' unique self-interacting property
 - → New form of matter: glueballs, hybrids
 - Gluonic Excitations provide measurements of the QCD potential

Critical to confinement and mass dynamical generation

Glueballs

• Low-lying glueballs with ordinary $J^{PC} \rightarrow mixing$ with $q\overline{q}$

→Observe a new peak

≻Challenge: reveal the exotic admixture

- Scalar glueball is expected to have a large production in J/ψ radiative decays: $B(J/\psi\to\gamma G_{0+})=3.8(9)\times 10^{-3}$ by LQCD
 - Observed $B(J/\psi \rightarrow \gamma f_0(1710))$ is **x10** larger than $f_0(1500)$

>BESIII: $f_0(1710)$ largely overlapped with scalar glueball

LQCD prediction of glueball spectrum

Light hadrons with exotic quantum numbers

- Unambiguous signature for exotics
 - Light Flavor-exotic hard to establish
 - Efforts concentrate on Spin-exotic
 - Forbidden for $q\overline{q}$:

 $J^{PC} = 0^{--}, even^{+-}, odd^{-+}$

- Only 3 candidates so far: All 1^{-+} isovectors
 - $\pi_1(1400)$: seen in $\eta\pi$
 - $\pi_1(1600)$: seen in $\rho\pi$, $\eta'\pi$, $b_1\pi$, $f_1\pi$
 - $\pi_1(2015)$ (needs confirmation): seen in $b_1\pi$, and $f_1\pi$
- $\pi_1(1400)$ & $\pi_1(1600)$ can be explained as one pole, according to recent analyses

Hybrid from LQCD

Decay width of $\mathbf{1}^{-+}$ hybrid π_1

Lightest spin-exotic state: 1^{-+}

1⁻⁺ Hybrids

- Isoscalar 1⁻⁺ is critical to establish the hybrid nonet
 - Can be produced in the gluon-rich charmonium decays
 - Can decay to $\eta\eta'$ in P-wave

PRD 83,014021 (2011), PRD 83,014006 (2011), EP.J.P 135, 945(2020)

 \rightarrow Search for η₁ (1⁻⁺) in J/ψ \rightarrow γηη'

Observation of An Exotic 1^{-+} Isoscalar State $\eta_1(1855)$

PRL 129 192002(2022), PRD 106 072012(2022)

- An isoscalar 1^{-+} , $\eta_1(1855)$, has been observed in $J/\psi \rightarrow \gamma \eta \eta'$ (>19 σ) $M = (1855 \pm 9^{+6}_{-1}) \text{ MeV/c}^2$, $\Gamma = (188 \pm 18^{+3}_{-8}) \text{ MeV/c}^2$ $B(J/\psi \rightarrow \gamma \eta_1(1855) \rightarrow \gamma \eta \eta') = (2.70 \pm 0.41^{+0.16}_{-0.35}) \times 10^{-6}$
 - Mass consistent with hybrid on LQCD
- Inspired many interpretations: Hybrid/KK₁Molecule/Tetraquark?
- Further more, suppression of $f_0(1710) \rightarrow \eta \eta'$ supports $f_0(1710)$ has a large overlap with glueball

Opens a new direction to completing the picture of spin-exotics 28

Synergies in new era of precision spectroscopy

- From serendipitous discoveries of new states to the systematic study of spectral properties and patterns
- High statistics → emergence of new properties/phenomena
- Test QCD with various probes

Summary

- Understanding how hadron spectroscopy are emerged from QCD remains a key question in fundamental physics, which requires
 - Both heavy and light sectors
 - Complementary experimental information
- Lots of progress in the experimental study of hadron spectroscopy
- More results to come and lots of opportunities and challenges ahead
- Joint experimental-theoretical efforts needed to understand the hadron spectroscopy and the strong interaction

Thank you for your attention ³⁰

Tensor glueball candidate

 $egin{aligned} \Gamma(J/\psi o \gamma G_{2^+}) &= 1.01(22) keV \ \Gamma(J/\psi o \gamma G_{2^+})/\Gamma_{tot} &= 1.1 imes 10^{-2} \end{aligned}$

CLQCD, Phys. Rev. Lett. 111, 091601 (2013)

Experimental results

 $Br(J/\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma \varphi \varphi) = (1.91 \pm 0.14^{+0.72}_{-0.73}) \times 10^{-4}$ BESIII PRD 93, 112011 (2016)

$$Br(J/\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma K_s K_s) = \left(5.54^{+0.34+3.82}_{-0.40-1.49}\right) \times 10^{-5}$$

BESIII PRD 98,072003 (2018)

 $Br(J/\psi \to \gamma f_2(2340) \to \gamma \eta' \eta') = \left(8.67 \pm 0.70^{+0.16}_{-1.67}\right) \times 10^{-6}$

BESIII PRD 105,072002 (2022)

 $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$ stated in π^-p reactions are observed with a strong production of $f_2(2340)$ Consist with WA102@CERN

It is desirable to search for more decay modes

Observation of An Isoscalar 1⁻⁺ State $\eta_1(1855)$ in $J/\psi \rightarrow \gamma \eta \eta'$

- Angular distribution as a function of $M(\eta\eta')$ expressed model-independently

$$\langle Y_l^0 \rangle \equiv \sum_{i=1}^{N_k} W_i Y_l^0(\cos\theta_{\eta}^i)$$

Related to the spin-0(S), spin-1(P), spin-2(D) amplitudes in ηη' by:

 $\sqrt{4\pi} \langle Y_0^0 \rangle = S_0^2 + P_0^2 + P_1^2 + D_0^2 + D_1^2 + D_2^2,$

 $\sqrt{4\pi}\langle Y_1^0 \rangle = 2S_0 P_0 \cos \phi_{P_0} + \frac{2}{\sqrt{5}} (2P_0 D_0 \cos(\phi_{P_0} - \phi_{D_0}) + \sqrt{3}P_1 D_1 \cos(\phi_{P_1} - \phi_{D_1})),$

$$\sqrt{4\pi} \langle Y_2^0 \rangle = \frac{1}{7\sqrt{5}} (14P_0^2 - 7P_1^2 + 10D_0^2 + 5D_1^2 - 10D_2^2) + 2S_0 D_0 \cos \phi_{D_0}$$
$$\sqrt{4\pi} \langle Y_3^0 \rangle = \frac{6}{\sqrt{35}} (\sqrt{3}P_0 D_0 \cos(\phi_{P_0} - \phi_{D_0}) - P_1 D_1 \cos(\phi_{P_1} - \phi_{D_1})),$$

$$\sqrt{4\pi}\langle Y_4^0 \rangle = \frac{1}{7}(6D_0^2 - 4D_1^2 + D_2^2).$$

• Narrow structure in $\langle Y_1^0 \rangle$

 \succ Cannot be described by resonances in $\gamma\eta(\eta')$

• $\eta_1(1855) \rightarrow \eta\eta'$ needed

 $M(\eta\eta')(GeV/c^2)$

1.5

Lineshape parameterization

$$\frac{d\operatorname{Br}(D^0\overline{D}^0\pi^0)}{dE} = \mathbf{B}\frac{1}{2\pi} \times \frac{\mathbf{g} * k_{\operatorname{eff}}(E)}{|D(E)|^2} \times \operatorname{Br}(D^{*0} \to D^0\pi^0)$$
$$\frac{d\operatorname{Br}(\pi^+\pi^- J/\psi)}{dE} = \mathbf{B}\frac{1}{2\pi} \times \frac{\Gamma_{\pi^+\pi^-} J/\psi}{|D(E)|^2}$$

$$D(E) = E - \frac{E_X}{2} + \frac{1}{2}g * \left(\kappa_{\text{eff}}(E) + ik_{\text{eff}}(E) + \kappa_{\text{eff}}^c(E) + ik_{\text{eff}}^c(E)\right) + \frac{i}{2}\Gamma_0$$

$$k_{\rm eff}(E) = \sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} + E - E_R}$$

$$\kappa_{\rm eff}(E) = -\sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} - E + E_R}$$

$$+\sqrt{\mu_p} \sqrt{(E - E_R)^2 + \Gamma_X^2/4} - E_X + E_R$$

$$+ \sqrt{\mu_p} \sqrt{(E_X - E_R)^2 + \Gamma_X^2/4} - \Gamma_X + \Gamma_{MRNOWN}$$

$$\Gamma_0 = \Gamma_{\pi^+\pi^- J/\psi} + \Gamma_{known} + \Gamma_{Unknown} + \Gamma_{XNOWN} + \Gamma_$$

* superscript c: charged $D^{*+}D^{-}$

* Due to the limited statistics, $\Gamma_{unknown}/\Gamma_{\pi^+\pi^- J/\psi}$ is fixed [Chunhua Li, Chang-Zheng Yuan, PRD 100(2019) 094003] [C. Hanhart, PRD 81, 094028 (2010)]

The effective range expansion

[S. Weinberg, Phys. Rev. 137, B672 (1965)]

$$a = -\frac{2(1-Z)}{(2-Z)}\frac{1}{\gamma} + \mathcal{O}(\beta^{-1})$$
$$r_e = -\frac{Z}{1-Z}\frac{1}{\gamma} + \mathcal{O}(\beta^{-1})$$

Z: field renormalization constant • Z = 0: pure bound (composite) state • Z = 1: pure elementary state $\beta^{-1} \approx \frac{1}{m_{\pi}} \approx 1.4$ fm, for both deuteron and the X(3872) $\gamma = \sqrt{2\mu E_b}$ [S. Weinberg, Phys. Rev. 137, B672 (1965)]

$$a = -\frac{2(1-Z)}{(2-Z)}\frac{1}{\gamma} + \mathcal{O}(\beta^{-1})$$
$$r_e = -\frac{Z}{1-Z}\frac{1}{\gamma} + \mathcal{O}(\beta^{-1})$$

Z: field renormalization constant • *Z* = 0: pure bound (composite) state • *Z* = 1: pure elementary state $\beta^{-1} \approx \frac{1}{m_{\pi}} \approx 1.4$ fm, for both deuteron and the *X*(3872) $\gamma = \sqrt{2\mu E_b}$

Parameters	<i>X</i> (3872)	deuteron	
Nearby threshold	$D^{*0}\overline{D}{}^{0}$	pn	
а	$-16.5^{+7.0}_{-27.6}$ $^{+5.6}_{-27.7}$ fm	-5.41 fm	Different sign, may suggest an
r_e	$-4.1^{+0.9}_{-3.3}{}^{+2.8}_{-4.4}$ fm	1.75 fm	A. Esposito PRD 105, L031503]
Range correction	negligible	important for r_e	\Rightarrow Close to 0 but can not be solved
Ζ	≈ 0.18	-	model-independently due to the range correction

Effective Range Expansion \rightarrow scattering length *a* and effective range r_e

Observation of $\Upsilon(10753) \rightarrow \omega \chi_{bJ}_{[PRL 130, 091902 (2023)]}$

Channel	$\sqrt{s} \; ({ m GeV})$	$N^{ m sig}$
$e^+e^- ightarrow \omega \chi_{b0}$	10.701	$0.0^{+1.1}_{-0.0}$
$e^+e^- ightarrow \omega \chi_{b1}$		$0.0\substack{+2.1\-0.0}$
$e^+e^- ightarrow \omega \chi_{b2}$		$0.1\substack{+2.2\-0.1}$
$e^+e^- ightarrow \omega \chi_{b0}$	10.745	$3.0\substack{+5.5 \\ -4.7}$
$e^+e^- ightarrow \omega \chi_{b1}$		$68.9^{+13.7}_{-13.5}$
$e^+e^- ightarrow \omega \chi_{b2}$		$27.6^{+11.6}_{-10.0}$
$e^+e^- ightarrow \omega \chi_{b0}$	10.805	$3.6^{+3.8}_{-3.1}$
$e^+e^- ightarrow \omega \chi_{b1}$		$15.0\substack{+6.8 \\ -6.2}$
$e^+e^- ightarrow \omega \chi_{b2}$		$3.3^{+5.3}_{-3.8}$

$$\begin{split} & \checkmark \sigma_B(e^+e^- \to \omega \chi_{b1}) / \sigma_B(e^+e^- \to \omega \chi_{b2}) \\ &= 1.3 \pm 0.6 \text{ at } \sqrt{s} = 10.745 \text{ GeV} \\ &\checkmark \text{Contradicts expectation of pure D-wave of 15} \\ &\checkmark 1.8 \sigma \text{ difference to S-D mixture of 0.2} \\ &\succ \Upsilon(10753) \to \omega \chi_{bJ} \& \Upsilon(10860) \to \Upsilon(nS) \pi \pi \\ &\text{ are different states} \end{split}$$

X(3960)=X(3930)? X(3960)=X(3915)?

- $\checkmark X \rightarrow D_s^+ D_s^-$ has smaller phase-space factor than $X \rightarrow D^+ D^-$
- \Rightarrow X has an exotic nature! Candidate for $c\bar{c}s\bar{s}$

Different particles?

	Mass (GeV)	Width (GeV)	J^P
$T^a_{c\bar{s}0}(2900)^0$ & $T^a_{c\bar{s}0}(2900)^{++}$	$2.908 \pm 0.011 \pm 0.020$	$0.136 \pm 0.023 \pm 0.020$	0+
$X_0(2900)/T_{cs0}(2900)$	$2.866 \pm 0.007 \pm 0.002$	$0.057 \pm 0.012 \pm 0.004$	0+
$X_1(2900)/T_{cs1}(2900)$	$2.904 \pm 0.005 \pm 0.001$	$0.110 \pm 0.011 \pm 0.004$	1-

$T^a_{c\bar{s}0}(2900)$ v.s. $X_0(2900)$

- ✓ Similar mass, but width and flavor contents are different.
- ✓ $T^{a}_{c\bar{s}1}(2900)?$
- $\checkmark T^{a}_{c\bar{s}0}(2900)^{++} \to D^{+}K^{+}?$
- $\checkmark T^a_{c\bar{s}0}(2900)^+ \to D^+_s \pi^0, D^+_s \pi^+ \pi^-?$
- no isospin relation: $[c\overline{s}u\overline{d}]$ v.s. $[cs\overline{u}\overline{d}]$
- U-spin relation: $[c\overline{s}\overline{u}d]$ v.s. $[c\overline{d}\overline{u}s]$
- $T^a_{c\bar{s}0}(2900)$ mass and width larger than $T_{cs0}(2900)$