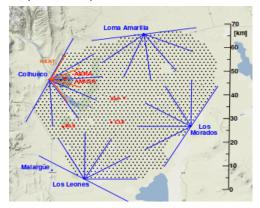
Results from the Auger Radio Detector

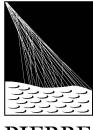
Carlo Cruz on behalf of the Pierre Auger Collaboration

IFLP (CCT La Plata-CONICET)

October 12, 2023

1 Pierre Auger Observatory

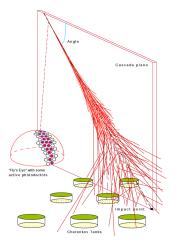

2 Cosmic Rays and Extensive Air Showers


3 Auger Engineering Radio Array (AERA) and Radio detection

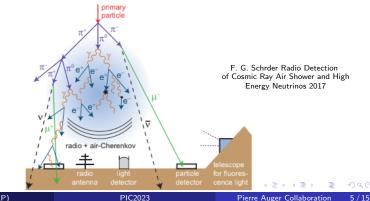
4 Results

Pierre Auger Observatory

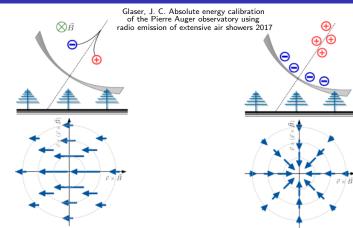
- The Pierre Auger Observatory is a world-renowned scientific facility located in Malargue, Mendoza province of Argentina.
- It is dedicated to the study of ultra-high-energy cosmic rays (UHECRs), from 10⁵ TeV to beyond 10⁸ TeV



Important Features


Pierre Auger: The observatory is named in honor Pierre Victor Auger.

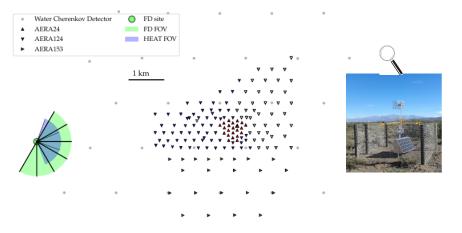
Hybrid-Detection Approach: Including ground-based detectors, fluorescence detectors.


Cosmic Rays and Extensive Air Showers

- **Cosmic rays** are high-energy particles originating from outer space which produce **extensive air showers**.
- Extensive Air Showers (EAS) are cascades of secondary particles initiated by high-energy cosmic rays in the Earth's atmosphere.
- A fascinating aspect of EAS is the emission of radio waves during their development.

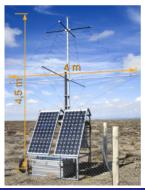
Carlo Cruz (UNLP)

Radio Emission Mechanism



Geomagnetic Radiation effect contributes to the radio signal as charged particles move through the Earth's magnetic field.

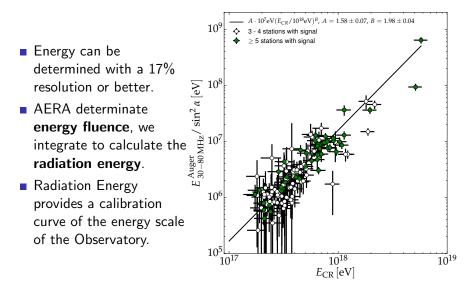
Askaryan Effect, where high-energy charged particles produce coherent radio Cherenkov radiation as they travel through a dielectric medium like air.


Experimental Setup: AERA

- Specialized radio antennas arrays are used to detect radio emission from EAS, such as the Auger Engineering Radio Array (AERA).
- AERA has 153 antennas covering an area of 17km² that operates at frequencies between 30-80 MHz

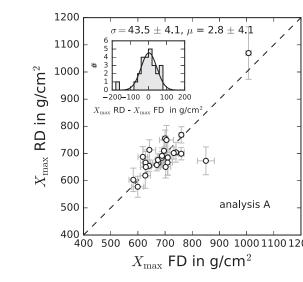
Advantages of Radio Detection

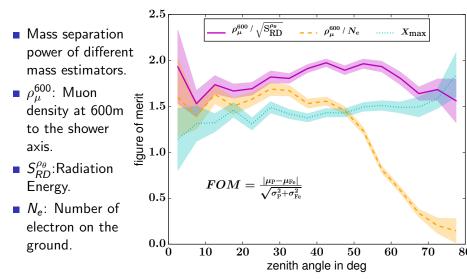
- Radio detection of EAS offers several advantages:
 - All-Weather Observations: Radio signals are not affected by cloud or aerosol conditions in the atmosphere.
 - Large Detection Areas: Radio arrays can cover extensive areas, increasing the chances of observing EAS events.
 - Complementary Information: Radio detection provides complementary data to other EAS detection methods, improving the accuracy of cosmic ray measurements.


Radio and FD event example

Radio Event

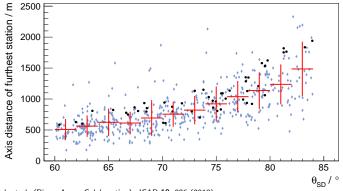
Carlo Cruz (UNLP)


Cosmic Ray Energy


A. Aab et al. (Pierre Auger Colaboration), Phys. Rev. Lett. 116, 241101 (2016)

Mass composition sensitivity

- Depth maximum
 X_{max} of an EAS.
- Radio signals are sensitive to X_{max}.
- X_{max} from AERA correlates well with the value from the Auger fluorescence detectors.
- Combined FD-radio resolution is $45g/cm^2$.


E. M. Holt for the Pierre Auger Collaboration, Proc. 35th ICRC, Busan Korea, POS(ICRC2017) 492

E. M. Holt for the Pierre Auger Collaboration, Proc. of the 2018 ARENA conference

Inclined air showers

- For inclined air showers, the shower maximum is typically dozens of kilometers away.
- A grid constant of 1.5km is sufficient for their detection.
- This opens a possibility for mass-composition studies of inclined air showers.

A. Aab et al. (Pierre Auger Colaboration), JCAP 10, 026 (2018)

Carlo Cruz (UNLP)

- Based on these findings, we plan to enhance each of the 1600 water-Cherenkov detectors in the SD by incorporating a single radio antenna as part of the continuous AugerPrime upgrade.
- This implementation will expand the observatory's coverage of the sky and increase its exposure.
- In conjunction with the WCDs, this combination introduces new prospects for detecting rare primary particles, such as UHE photons and neutrinos, with a significantly elevated identification probability.

- AERA has shown us that radiation energy can be measured with precision and serves as a reliable estimator of energy.
- We also found a good agreement between the measurements of X_{max} using radio detection and the measurements using fluorescence detectors.
- We demonstrate that another approach to studying composition involves integrating radio measurements with data on the muonic component collected by AMIGA and the Auger Surface Detector.
- The AugerPrime Radio Detector exhibits remarkable sensitivity to the electromagnetic component of air showers, providing new insights into the reconstruction of primary mass, energy, and arrival direction for inclined showers.