UNIVERSITY

PIC 2023 – 42nd International Conference on Physics in Collision, October 10-14, 2023, Arica, Chile

Searches for Physics Beyond the Standard Model at the LHC

Norbert Neumeister PIRDIE

On behalf of the ATLAS, CMS and LHCb collaborations

Introduction

- Direct searches for BSM phenomena \rightarrow Evidence of new physics •
 - Resonant searches
 - Non-resonant searches
 - Unconventional signatures
- New methods and tools have been developed: data scouting, boosted jet tagging, etc. •
- Focus mainly on recent results made public with the 13 TeV dataset.
- Complete set of public BSM results:
 - ATLAS:
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
 - CMS:
 - https://twiki.cern.ch/twiki/bin/view/CMS/B2G
 - https://twiki.cern.ch/twiki/bin/view/CMS/SUS
 - https://twiki.cern.ch/twiki/bin/view/CMS/EXOTICA
 - LHCb:
 - https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary QEE.html

Norbert Neumeister - Purdue University

LHC Run 2

- The LHC has been operating at $\sqrt{s} = 13$ TeV in 2015-2018 (Run 2).
- It delivered a dataset corresponding to about 160 fb⁻¹.
- About 140 fb⁻¹ of physics-quality data recorded by each ATLAS & CMS.
- The ATLAS, CMS and LHCb detectors have been working spectacularly with virtually no degradation in performance over the years.

Norbert Neumeister - Purdue University

Diphoton Resonance Searches

- Many extensions to the Higgs sector of the SM motivate additional spin-0 bosons.
- Search for diphoton resonance additional Higgs boson decaying to a pair of photons.
- First search for new diphoton resonances in the mass range between 70 and 110 GeV.
- CMS: 1.35σ global (2.9 σ local) excess at m_X = 95.4 GeV.

Norbert Neumeister - Purdue University

4

M motivate additional spin-0 bosons. Higgs boson decaying to a pair of photons the mass range between 70 and 110 GeV. = 95.4 GeV.

Diphoton Resonance Searches

- Both a model-independent search for a generic spin-0 particle and a model-dependent search for an additional low-mass Higgs boson are performed.
- No significant excess is observed, and an upper limit is set on total (fiducial) cross-section times branching ratio from 8 to 53 fb (19 to 102 fb) for the model-independent (model-dependent) result.
- ATLAS: 1.7 σ local excess at m_X = 95.4 GeV.

Norbert Neumeister - Purdue University

ONF-2023-035

Search focuses on light, spin-0 bosons decaying to two photons in the 66 to 110 GeV mass range.

- Search for direct production of low-mass dimuon resonances.
- Exploits a dedicated high-rate trigger stream that records events with two muons with transverse momenta as low as 3 GeV but does not include the full event information.
- Look for narrow peaks in the dimuon mass spectrum in the ranges of I.I - 2.6 GeV and 4.2 - 7.9 GeV.
- No significant excess observed.
 - Limits are set for a minimal dark photon model and for a scenario with two Higgs doublets and an extra complex scalar singlet (2HDM+S).

Values of the squared kinetic mixing coefficient ε^2 in the dark photon model above 10⁻⁶ are excluded. Norbert Neumeister - Purdue University

CMS: arXiv:2309.16003 (submitted to JHEP)

Dilepton Resonance Searches

- Search in di- τ mass spectrum is motivated from additional Higgs in the context of MSSM. - via gluon fusion (gg $\rightarrow \phi$) or in associate production with b quarks
- Interference with the SM $\tau\tau$ continuum g 0000000 is taken into account.
- Two excesses observed:
 - at 0.1 and 1.2 TeV with local p-values equivalent to about three standard deviations.

Norbert Neumeister - Purdue University

CMS: JHEP 07 (2023) 073

00000000 ϕ 0000000 0000000

Dilepton Resonance Searches

- Search for resonant eµ, e τ , µ τ production.
- Models: LFV Z', scalar neutrinos in RPV SUSY, and Quantum Black Holes (QBH ADD/RS).
- Signature: 2 back-to-back leptons, no b-jets.
- No significant excesses observed.

Norbert Neumeister - Purdue University

ATLAS: arXiv:2307.08567 (submitted to JHEP)

Model	Observed (expected) 95% CL lower limit				
	$e\mu$ channel	$e\tau$ channel	$\mu\tau$ channe		
LFV Z'	5.0 (4.8)	4.0 (4.3)	3.9 (4.2)		
RPV SUSY $\tilde{\nu}_{\tau}$	3.9 (3.7)	2.8 (3.0)	2.7 (2.9)		
QBH ADD $n = 6$	5.9 (5.7)	5.2 (5.5)	5.1 (5.2)		
QBH RS $n = 1$	3.8 (3.6)	3.0 (3.3)	3.0 (3.1)		

Heavy Vector Bosons

- Search for heavy SM-like W' resonance.
 - Decaying to the third generation quarks.

Norbert Neumeister - Purdue University

- Search for heavy vector bosons decaying to 3rd generation quarks.
- Benefits from improvements in reconstruction of top-quarks and b-jets at high p_T .
- Probing W' with masses up to \sim 5 TeV.

Norbert Neumeister - Purdue University

Heavy Vector Bosons

Heavy Neutral Bosons

- Search for Z' bosons decaying to pairs of heavy Majorana neutrinos.
 - Search for an excess in the invariant mass distribution of the final-state objects, two same-flavor leptons (e or μ) and at least two jets.
- No significant excess of events beyond the expected background.
- Upper limits are set on the product of the Z' production cross section and its branching fraction to a pair of N, as functions of N and Z' masses.
- The observed upper limit on $m_{Z'}$ reaches up to 4.42 TeV.

Norbert Neumeister - Purdue University

10-2

<u>ਰ</u> ਼ਿ 10⁻³

 10^{-4}

⊵ 10⁻

ਰੂ ° 10^{-3 ∟}

10-

11

- Search for new neutral vector boson (Z') decaying to a dimuon pair produced in association with at least one b-jet.
- Strongly disfavors DY events by presence of b-quark.
- Sensitivity to mass of 350 GeV $\leq m_{Z'} \leq 2.5$ TeV.
- Constraints are set on a specific Z' model (B_3-L_2).
- Most of the allowed parameter space is excluded for a Z'boson with $350 < m_{Z'} < 500$ GeV, but large regions of the parameter space are also excluded at higher masses.

Norbert Neumeister - Purdue University

Dileptons + MET

- Search for dark matter particles produced in association with a new neutral vector boson.
- Decays of the Z' boson to same-flavour light leptons ($e^+e^-/\mu^+\mu^-$) are studied for Z' masses above 200 GeV.
- No significant excess over the SM prediction is observed. - The results are interpreted for several dark-Higgs and light-vector benchmark
 - model scenarios.
 - Cross-section limits are set considering each benchmark scenario, as well as limits on the coupling of the Z' with leptons.

Benchmark model	Limit	Cross Section [pb]		Lepton Coupling	
Denemiark model		ee	$\mu\mu$	ee	$\mu\mu$
Light Vector – light dark-sector	Expected Observed	$ \begin{vmatrix} 2.5 \times 10^{-4} \\ 3.6 \times 10^{-4} \end{vmatrix} $	4.6×10^{-4} 9.4×10^{-4}	$0.019 \\ 0.023$	0.026 0.037
Light Vector – heavy dark-sector	Expected Observed	$ \begin{vmatrix} 1.3 \times 10^{-4} \\ 1.9 \times 10^{-4} \end{vmatrix} $	2.1×10^{-4} 4.7×10^{-4}	$\begin{array}{c} 0.11 \\ 0.13 \end{array}$	0.14 0.20
Dark Higgs – light dark-sector	Expected Observed	$\begin{array}{ c c c c c } 5.8 \times 10^{-4} \\ 8.9 \times 10^{-4} \end{array}$	1.0×10^{-3} 2.0×10^{-3}	$0.017 \\ 0.021$	0.022 0.031
Dark Higgs – heavy dark-sector	Expected Observed	$ \begin{vmatrix} 1.6 \times 10^{-4} \\ 2.3 \times 10^{-4} \end{vmatrix} $	2.4×10^{-4} 5.3×10^{-4}	$0.076 \\ 0.091$	0.094 0.14

Data

PIC 2023

Norbert Neumeister - Purdue University

ATLAS-CONF-2023-045

Light Vector $m_{\chi_1} = 5 \text{ GeV}$

 $m_{\chi_2} = 2m_{Z'}$

Dark Higgs

 $m_{\gamma} = 5 \text{ GeV}$

 $m_{h_{\mathcal{D}}} = m_{\mathbf{Z}'}$

 $m_{h_{\rm D}} = 125 {\rm ~GeV}$

Light dark-sector

Heavy dark-sector $m_{\gamma} = 5 \text{ GeV}$

Excited Taus

- Search for excited τ -lepton and leptoquarks. •
 - $\tau \tau j j$ final state: events with two hadronically decaying τ -leptons and two or more jets.
- 4-fermion contact interaction production and decay. • Leptoquarks with masses below 1.3 TeV are excluded.

Norbert Neumeister - Purdue University

PIC 2023

ATLAS: JHEP 06 (2023) 199

- Bump hunt in $m_{4j} \approx m_Y$ and the average di-jet system $\langle m_{2j} \rangle \approx m_X$.
- CMS: 1.6 σ global (3.9 σ local) excess at m(Y,X) = (8,2) TeV.
- ATLAS: No events observed around 8 TeV.

Norbert Neumeister - Purdue University

PIC 2023

Jet

15

- Search for narrow tri-jet resonances.
- Direct 3-body decay of a right-handed Z_R boson, both with narrow width. Cascade decay of an initial resonance X, a Kaluza-Klein gluon or an excite quark
- q^{*}, with intermediate resonance Y.
- Extend di-jet search techniques to tri-jet case probing mass range $m_{3i} \approx 1.75 - 9 \text{ TeV}.$

Norbert Neumeister - Purdue University

- Search for pair-produced multijet signals: tri-jets, high jet multiplicity.
- New analysis techniques with ML for jet assignment.
- Major improvement in sensitivity compared to previous result.

tri-jets, high jet multiplicity. Assignment.

- trijets, and pairs of merged dijets.
 - Pair production of higgsinos, gluinos, and top squarks, in the RPV supersymmetric framework is considered.
- Uses scouting dataset: saves only event data reconstructed by the high-level trigger \Rightarrow improves sensitivity.
- Extend prior exclusions on RPV squarks & gluinos to low masses ~70 200 GeV.

Norbert Neumeister - Purdue University

CMS-PAS-EXO-21-004

Search for pair-produced multijet signatures, measuring the average mass distribution of pairs of

- Search for exotic di-jet signatures jets with high charged-particle multiplicity.
- Explores QCD-like dark sector scenarios with dark jets.
- Extend di-jet search techniques to dark jets probing mass range up to \sim 3 TeV.

Searches for Leptoquarks

- Search for pair-produced scalar leptoquarks decaying to muons and bottom quarks. - force $\beta = 1$ (no decays to neutrinos).
- Pair-production not sensitive to LQ-lepton-quark coupling strength λ_{LQ} .
- No longer constrained to uni-generational LQ couplings.
 - B factory and muon g-2 measurements motivate searches.
- Unique signature: Two high- p_T muons and two high- p_T b-jets.
 - Main backgrounds $Z \rightarrow \mu\mu$ with lost μ events.
- No excess observed: Exclusion limit 1810 GeV.

Norbert Neumeister - Purdue University

CMS-PAS-EXO-21-019

LQ

 \mathbf{q}

Searches for Leptoquarks

- Search for leptoquarks in 3^{rd} generation with τ and bottom quarks.
- Updates in recent submitted paper:
 - fake tau model
 - minor backgrounds added
- Excess is most prominent in non-resonant LQ production.
 - probes high mass
 - at high S_T^{MET} with 1 jet but 0 b-tags \rightarrow 3.4 3.7 σ
- Not compatible with signal model of 100% LQ \rightarrow b τ .

Norbert Neumeister - Purdue University

CMS: arXiv:2308.07826 (submitted to JHEP)

Lepton + Jet Resonance Searches

- Search for resonance in e/μ + jet invariant mass spectrum.
- Motivated by quantum black holes arising in low-scale quantum gravity models.
- Signature: I light lepton & I jet (p_T >130 GeV each).
- Probing quantum black hole masses up to ~7 TeV.

Invariant mass of lepton and jet

Norbert Neumeister - Purdue University

ATLAS: arXiv:2307.14967 (submitted to PRD)

- VLQ could solve hierarchy problem.

Norbert Neumeister - Purdue University

Vector-Like Quarks

CMS: JHEP 05 (2022) 093

Vector-Like Quarks

- Search for pair-produced heavy vector-like quarks in the lepton+jets final state. Optimized for $T \rightarrow Wb$ quark, with one W boson decaying leptonically and the other
 - hadronically.
- Events with one high-p_T electron or muon, large missing transverse momentum, a large-radius jet identified as a W boson, and multiple small-radius jets, at least one of which is b-tagged.
- Vector-like quarks with $Br(T \rightarrow Wb) = 100\%$ are excluded for masses below 1.7 TeV. These limits can also be applied to vector-like Y quarks decaying to Wb.

Norbert Neumeister - Purdue University

ATLAS-CONF-2023-070

(000000

300000

Vector-Like Quarks

- Search for electroweak production of a single vector-like quark (T) in association with a bottom quark.
 - T decaying to tH or tZ; fully hadronically.
 - Event kinematics and the presence of jets containing b hadrons are used to reconstruct the hadronic decays of the t and Higgs or Z boson.
- Probing VLQ masses up to the TeV scale.
- For T masses from 600 to 1200 GeV, the upper limits on the production cross section of a T produced in association with a b and decaying via a t and a Higgs or Z boson range from 1260 to 68 fb.

Norbert Neumeister - Purdue University

Vector-Like Leptons

- Motivated from flavour anomalies.
 - VLL decay via vector leptoquarks, which couple dominantly to the third generation.
 - Categorize by number of b-jets and τ -leptons.
 - Using DNN to discriminate against QCD and tt backgrounds.
- Excess of events at 600 GeV with 2.8σ .

Norbert Neumeister - Purdue University

CMS: arXiv:2208.09700

Searches for SUSY Stops

- Stop production in $t\bar{t} + E_{T}^{miss}$ final states.
- Improved analysis techniques.
- Sensitivity gains for $m_{\tilde{t}} \approx m_{\tilde{\chi}_1^0} + m_t$.
- Probing $m_{\tilde{t}} < 1200$ GeV and $m_{\tilde{\chi}_1^0} < 600$ GeV.

ATLAS-CONF-2023-043

Searches for SUSY Stops

- Exploring more complex SUSY scenarios allow for minimal flavor violation.
- Search for I hadronic top + I charm jet + E_T^{miss} final states.
- Dedicated c-tagging working point optimized for the analysis.
- Search for tc + E_T^{miss} fills the gap between tt + E_T^{miss} & cc + E_T^{miss} searches.

Norbert Neumeister - Purdue University

Searches for Electroweak SUSY

- Search for higgsino pairs decaying to Higgs bosons in Di-Higgs:
 - 4b-jets + E_T^{miss} final state.
- Highest mass reach of analyses targeting GMSB models.
 - reaching TeV scale.
- Combination of searches for chargino/ neutralino production decaying via Higgs, W and Z.
- Combination highlights complementary coverage of analyses & extends exclusion limits.

Norbert Neumeister - Purdue University

ATLAS-CONF-2023-046

PIC 2023

All limits at 95% CL

ATLAS Run 1 arXiv:1403.5294

Observed Limit $(\pm 1 \sigma_{\text{theory}}^{\text{SUSY}})$ Expected Limit $(\pm 1 \sigma_{exp})$

ndividual Analyses Observed Limi

Expected Limit

ATLAS-CONF-2022-059

arXiv:1908.08215 arXiv:2209.13935

All Hadronic arXiv:2108.07586

Searches for Electroweak SUSY ATLAS-CONF-2023-055

(pMSSM), impose LHC & external constraints.

- Scan highlights gaps from simplified models.

dark matter candidates.

Norbert Neumeister - Purdue University

Scan the electroweak sector parameter space of Phenomenological Minimal Supersymmetry

Complementary constraints from LHC searches on weakly-interacting SUSY particles that may be

Unconventional Signatures

- Many searches for BSM physics with unconventional signatures:
 - Emerging jets, heavy charged Long Lived Particles (LLPs), delayed jets, displaced jets, disappearing tracks, displaced muons
- Signatures define search strategy
 - Could be light or heavy
 - Could travel fast or slow
 - Could decay to quarks, gluons, or leptons, or even invisible particles (missing transverse momentum)
- Main handles:
 - timing
 - displacement
 - ionization
- Every sub-system important

distance travelled = $\beta \gamma \times c \tau$

Long-Lived Massive Particle Search

- Search for a long-lived LSP that undergoes semi-leptonic decay $\tilde{\chi}_1^0 \to \mu^+ q_i q_i$
- an isolated high-pT muon.

Norbert Neumeister - Purdue University

Searches for Long-Lived Particles

- Searches for long-lived particles have become a central topic of the CMS physics program.
- Cover final states that are less energetic and with relatively small lifetimes. Search for events with at least one displaced vertex (within beam pipe) +
- MET to allow wider range of lifetimes and softer final states.
- Reconstruct vertex using an interaction network based on graph neutral networks to reduce backgrounds. (qf) (qf)
- Excludes $m \leq 1.8 2$ TeV for $1 \leq c\tau \leq 100$ mm.

Norbert Neumeister - Purdue University

CMS-PAS-EXO-22-020

Searches for Displaced Lepton Jet

- Search for displaced collimated leptons or light hadrons in exotic Higgs decays.
- Target m_{vd} in MeV to GeV range.
- Dedicated taggers to reject main backgrounds.

Norbert Neumeister - Purdue University

Searches for Displaced Muons

- Search for displaced muons includes Run 3 data at $\sqrt{s} = 13.6$ TeV from 2022.
- Target $10 \leq m_{ZD} \leq 60$ GeV.
- Improved sensitivity from use of new triggers.
- Muon reconstruction:
 - Use only muon system (STA)
 - Muon reconstruction in both tracker & muon system (TMS)
- Gain in sensitivity from including Run 3 data.

Norbert Neumeister - Purdue University

Combination of Run 2 & Run 3

Search for Highly Ionizing Particles

- Search for magnetic monopoles and stable particles with high electric charge.
- Limits on magnetic monopoles of charge Ig_D and $2g_D$ and high-electric-charge objects $20 \le |z| \le 100$, m~0.2 - 4 TeV.

Norbert Neumeister - Purdue University

[GeV] ATLAS 13 TeV PF 3500 limit 3000 MoEDAL 13 TeV DY+F SS ATLAS 2500 Dirac Magnetic Monopoles ATLAS 13 TeV DY **1500** $\Phi_{\text{road}} = \frac{\sum_{HT} \Phi_{HT}}{DHT}$ JoEDAL 13 TeV DY 1000 MoEDAL 8 TeV DY 500 PRL.126.07180⁻ This work PRL.124.031802 **PRD.93.052009 PRL.123.021802 PLB782(2018)510** PRL.96.201801 2 3 5 0 Charge $[g_{D}]$

Search for Highly Ionizing Particles

- Search for heavy, long-lived, charged particles with large ionization energy loss.
- Constrain BSM scenarios with gluinos that form R-hadrons as well as sleptons & charginos.
 - target m > 100 GeV and τ > 3 ns.
- Determine $\beta\gamma$ and the mass m = p/ $\beta\gamma$ using two independent methods.
 - pixel dE/dx and calorimeter TOF.

Norbert Neumeister - Purdue University

p

 $au_{(\mathrm{LLP})}$

 $au_{(LLP)}$

Summary

- Extensive search program for BSM physics at the LHC. - LHC has a well calibrated dataset of 140 fb⁻¹ from Run 2 at $\sqrt{s} = 13$ TeV.
- Extending the sensitivity to new regimes.
 - Uncovered kinematics, both highest and lowest masses.
- Use new reconstruction techniques: boosted methods, displaced decays, etc. Looking forward to even more exciting Run 3.
 - Searches using Run 3 at $\sqrt{s} = 13.6$ TeV with ~60 fb⁻¹ in 2022 & 2023 are ramping up.
- Much larger dataset expected from the HL-LHC after 2029.
 - Stay tuned for many more results!

