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Introduction

Hot topic: 3D hadron structure & Transverse Momentum Dependent (TMD)
factorization

the baseline TMD method: Collins-Soper-Sterman (CSS)

recently new developments to include TMD physics in MCs:
TMD Parton Branching (PB) method
Hautmann, Jung, Lelek, Radescu, Zlebcik, Phys.Lett.B 772 (2017) 446 & JHEP 01 (2018) 070

Today: overview of the PB method and its development up to NNLL

Image: James LaPlante/Sputnik Animation, MIT CAST & Jefferson Lab
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What is the TMD Parton Branching method?

All this is true!
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TMD PB method in a nutshell

Evolution equation:
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Probabilities ⇐⇒ solve by Monte Carlo (MC) :

• ∆a
(
µ2, µ2

0

)
- evolution from µ2

0 to µ2 without branchings

• PR
ab(z, µ2) - splitting of b → a

zM defines resolvable and non-resolvable branchings
transverse momentum k calculated at each branching → TMD from parton branching
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Fits of PB distributions

Bermudez Martinez, Connor, Hautmann, Jung, Lelek, Radescu, Zlebcik, Phys.Rev.D 99 (2019) 7, 074008

The parameters of the initial distributions have to be
obtained from the fits to data → xFitter

HERAPDF2.0 recipe: H1, ZEUS, Eur.Phys.J.C 75 (2015) 12, 580

data: HERA H1 and ZEUS combined DIS measurement

range: 3.5 < Q2 < 50000 GeV2, 4 · 10−5 < x < 0.65

Two scenarios, both very similar χ2/d.o.f. ≈ 1.21:

Set1: αs
(
µ′2
)
, reproduces HERAPDF2.0 X

Set2: αs
(

q2
⊥

)
, different HERAPDF2.0 X

TMDs and iTMDs available in TMDlib
Eur.Phys.J.C 81 (2021) 8, 752
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DY from fixed-target up to LHC
Eur.Phys.J.C 80 (2020) 7, 59

TMDs fitted to HERA data applied to DY

technical development:
matching TMDs to NLO ME

standard MCatNLO: when ME matched
with PS, subtraction terms (for soft
and collinear contribution) used to
avoid double counting

PB TMDs similar to PS
→ subtraction needed for TMDs+NLO
ME Phys.Rev.D 100 (2019) 7, 074027

• Low and middle p⊥ spectrum well described.
At higher p⊥ from Z+ jets important → see later

• Good description of DY in different kinematic ranges: NuSea, R209, Phenix,
Tevatron, LHC. No tuning/adjusting of the method for different

√
s

• "low q⊥ crisis" A. Bacchetta et al., Phys. Rev. D 100, 014018 (2019):
perturbative fixed order calculations in collinear factorization not able to describe
DY pT spectra at fixed target experiments for pT /mDY ∼ 1 → we confirm this:

at larger masses and LHC energies the contribution from soft gluons in the
region of p⊥/mDY ∼ 1 is small and the spectrum driven by hard real emission.
at low DY mass and low

√
s even in the region of p⊥/mDY ∼ 1 the contribution

of soft gluon emissions essential
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DY at high pt

Recall: DY at high p⊥: large corrections from higher orders

technical developments:

Cascade: Initial State TMD PS
guided by the PB TMDs
Eur.Phys.J.C 81 (2021) 5, 425

We start from a final parton a at a
given x and µ and we it evolve back
till µ0

Πa
(
µ2, µ2

0

)
=

exp

(
−
∑

b

∫ µ2

µ2
0

dµ′2

µ′2

∫ 1

0
dz zPR

ab

(
z, µ2
) Ãb (x,k′⊥,µ

′)

Ãa(x,k⊥,µ′)

)
TMD merging procedure developed:
extension of MLM method to the TMD
case

Bermudez Martinez et al., Phys.Lett.B 822 (2021) 136700

7



High energy kt-factorization & PB
Hautmann, Hentschinski, Keersmaekers, Kusina, Kutak, Lelek, Phys.Lett.B 833 (2022) 137276
Idea: replace DGLAP P by TMD P
-Concept from high-energy factorization (Catani & Hautmann 94′), TMD Pqg calculated
-for finite k′2⊥, k′2⊥ ∼ O(k2

⊥):
expansion of TMD P in (k′2⊥/q̃2

⊥)n, with z-dependent coefficients

resummation of ln 1
z at all orders in αs via convolution with TMD gluon Green’s

functions
-Other channels by Gituliar, Hentschinski, Kusina, Kutak & Serino (2015− 2017)
goal: incorporate both small-x and Sudakov contributions

What to do with the Sudakov form factor?
newly constructed TMD Sudakov

∆a
(
µ2, µ2

0

)
→ ∆a

(
µ2, µ2

⊥1, k2
⊥,
)

= exp
(
−
∑

b

∫ µ2

µ2
0

dµ′2

µ′2

∫ zM
0

dz zPR
ba

(
z, k2
⊥, µ

′2
))

P - angular averaged P

k′

z

Hard
interaction

k

q

momentum sum rule & unitarity crucial

Only with TMD Sudakov momentum sum rule satisfied

First parton branching algorithm to
TMDs and PDFs which includes TMD P and
fulfils momentum sum rule

first step towards a full TMD MC
covering the small-x

8



Sudakov in PB

PB implements AO

angles of emitted partons increase from the hadron side
towards hard scattering

S. Catani, G. Marchesini, B. Webber (CMW):

scale associated with the emitted transverse momentum

q⊥ = (1− z)µ′ and αs (q⊥)

AO assures PB TMDs do not have IR singularities

PB limits for iTMDs: f̃a(x, µ2) =
∫

dk2
⊥Ãa(x, k⊥, µ2)

Related issue: zM

zM = 1 & αs (µ′)→ DGLAP

AO: q0 - the minimal emitted transverse momentum for which a
branching can be resolved
zM (µ′) = zdyn(µ′) = 1− q0/µ

′, LO P & αs (q⊥)→: CMW

Motivated by AO, PB Sudakov factorized:

∆a(µ2, µ2
0) =

exp
(
−
∫ µ2

µ2
0

dµ′2

µ′2

[∫ zdyn(µ′)

0
dz kq (αs )

1−z − dq(αs )
])
× exp

(
−
∫ µ2

µ2
0

dµ′2

µ′2

∫ zM≈1

zdyn(µ′)
dz kq (αs )

1−z

)
.

both perturbative and non-perturbative regions are taken into account:

∆a(µ2
, µ

2
0) = ∆(P)

a

(
µ

2
, µ

2
0, q0
)
· ∆(NP)

a

(
µ

2
, µ

2
0, ε, q2

0

)
.

P: z < zdyn ⇐⇒ q⊥ > q0
NP: zdyn < z < zM (zM = 1− ε with ε� 1), ⇐⇒ q⊥ < q0
freeze αs: αs (q⊥)→ αs (q0)
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Perturbative low p⊥ resummation in PB

PB perturbative Sudakov form factor

∆a(Q2, q2
0)(P) = exp

(
−
∫ Q2

q2
0

dq2
⊥

q2
⊥

(∫ zM =1−
q⊥
Q

0
dz
(

ka(αs ) 1
1−z

)
− da(αs )

))

notice:
∫ 1−

q⊥
Q

0
dz
(

1
1−z

)
= 1

2 ln
(

Q2

q2
⊥

)
Collins-Soper-Sterman (CSS1) Sudakov form factor:

∆CSS1
a (b,Q,Q0, µ0) =

exp
(
−
∫ µ2

Q
µ2

0

dµ′2

µ′2

(
Aa(αs ) ln

(
Q2
µ′2

)
+ Ba(αs )

))
∆NP

a

dσ
dq⊥

∼

∫
d2b exp(ib · q⊥)

∫
dz1dz2H(Q2)

F1(z1, b, scales)F2(z2, b, scales) + Y

F = f ⊗ C ⊗
√

∆CSS

We can compare: ka ⇐⇒ Aa and
da ⇐⇒ Ba, order by order in αs

LL (A1), NLL (A2, B1)
coefficients in Sudakov the same
in PB and CSS

10



NNLL:

B2:

Renormalization group transformations mix the B, C, and H
MS resummation scheme: B corresponds to d
Difference coming from different schemes proportional to β0

A3:

double logarithmic part in PB: Paa = 1
1−z ka + ... (part of the DGLAP P)

collinear anomaly: at NNLL ka and Aa do not coincide Becher & Neubert
→ NNLL resummation in the PB Sudakov not achievable by implementing NNLO P

BUT can be done with effective coupling!

Banfi, El-Menoufi & Monni; Catani, de Florian & Grazzini:

αeffs = αs
(

1 +
∑

n

(
αs
2π

)n
K(n)
)

K(1) = CA
(

67
18 −

π2
6

)
− 5

9 Nf

K(2) = C2
A

(
245
24 −

67
9 ζ2 + 11

6 ζ3 + 11
5 ζ

2
2

)
+ CF Nf

(
− 55

24 + 2ζ3
)
+ CANf

(
− 209

108 + 10
9 ζ2 − 7

3 ζ3
)
− 1

27 N2
f + πβ0

2

(
CA
(

808
27 − 28ζ3

)
− 224

54 Nf
)

PB: recently implemented A3 with αeffs
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PB with A3
Bermudez Martinez, Keersmaekers, Lelek, Mendizabal Morentin, Taheri Monfared, van Kampen

paper in preparation

NEW RESULTS
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NLO: NLO P + 2 loop αs
NLL: LO P + 2 loop αeffs with K(1)

NNLL: NLO P + 2loop αeffs with K(2)

Big effect between NLL and NLO
Effect between NLO and NNLL O(2%)
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Non-perturbative Sudakov
Bermudez Martinez, Keersmaekers, Lelek, Mendizabal Morentin, Taheri Monfared, van Kampen

paper in preparation

NEW RESULTS
if zM ≈ 1- non - perturbative PB Sudakov included:

∆(NP)
a (µ2, µ2

0, ε, q0) =

exp
(
−
∫ µ2

µ2
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dµ′2

µ′2
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=

exp
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− ka(αs )

2 ln
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0
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ln
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0

ε2µ0µ
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Logarithmic structure as in CS kernel D of the
modern CSS (CSS2)

∆CSS2
a (b,Q,Q0, µ0) =

exp
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∫ µ2

Q
µ2
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(
γk (αs ) ln

(
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+ γj (αs )
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×

exp
(
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0

)

CS kernel from the PB approach extracted
using the method of Phys.Rev.D 106 (2022) 9
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s(q2 ), zM = 1 q0/ ′, q0 = 1.0 GeV
s(q2 ), zM = 1 q0/ ′, q0 = 0.5 GeV

4 models, differing in the
amount of radiation, were
studied

radiation controlled via

∆(NP)
a and αs

The amount of radiation has
a huge impact on the
extracted CS kernels
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Summary & Conclusions

TMD Parton Branching: a MC method to obtain QCD collider predictions based on
TMDs

PB: TMD evolution equation to obtain TMDs; TMDs can be used in TMD MC
generators to obtain predictions

Discussed today: (very incomplete) overview of the PB applications

TMD evolution equation

fits to HERA DIS data

application to inclusive DY at different
√

s, DY + jets

Resummation
- high energy kt- factorization with TMD splitting functions
- low qt resummation
- new result: NNLL TMD evolution

Thank you!
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