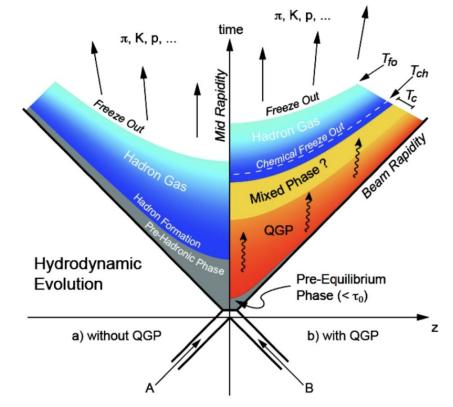
Study of thermodynamic variables in high-energy collisions using Tsallis Statistics

Rishabh Sharma

(in collaboration with Krishan Gopal, Sharang Sharma, and Chitrasen Jena) Indian Institute of Science Education and Research (IISER), Tirupati

October 12, 2023


42nd International Conference on Physics in Collision *Universidad de Tarapacá, Arica, Chile*

- \star Introduction
- \star Tsallis Statistics
- \star Fits to p_T -spectra
- \star Thermodynamic Variables
- ★ Summary

- ★ Hadronic fireball attains thermal equilibrium by self-interacting constituents
 in a process known as thermalization
- ★ Interactions amongst hadrons can be of two types *elastic & inelastic*
- ★ Chemical Freeze-Out (CFO) → surface of last inelastic scattering
- ★ *Kinetic Freeze-Out (KFO)* → surface of last elastic scattering
- ★ Recent results suggest formation of QGP matter in small collision systems
- ★ Studying thermodynamic properties across different collision systems will aid in the understanding of QGP like effects in small systems

Courtesy:https://particlesandfriends.wordpress.com/2016/10/14/evolution-of-collisions-and-qgp/

How do various thermodynamic quantities at KFO vary as we move from small to large collision systems?

★ Tsallis statistics is a *generalization of Boltzmann-Gibbs statistics* to include *non-equilibrium effects*

$$f(E,q,T,\mu) \equiv \left(1+(q-1)\frac{E-\mu}{T}\right)^{-\frac{1}{q-1}}$$

- ★ $q \rightarrow 1$ will lead to Boltzmann-Gibbs statistics
- ★ Invariant yield in the Tsallis framework is given as:

$$\frac{d^2 N}{dp_T d\eta} = 2 \frac{V}{(2\pi)^3} p_T^2 \sum_{i=1}^3 g_i \left[1 + (q-1) \frac{m_{T,i}}{T} \right]^{\frac{-q}{q-1}}$$

where i = pions, kaons, protons ('2' is to account for respective anti-particles)

\star Fit parameters: *V*, *T*, and *q*

E = energyg = degeneracy μ = chemical potential (=0 for LHC energies) T = temperature*q* = non-extensivity parameter V = volume η = pseudorapidity p = momentum p_{τ} = transverse momentum m_{T} = transverse mass = $\sqrt{(p_{T}^{2}+m^{2})}$

★ V, T, and q are used to extract various thermodynamic properties at KFO in the hadronic fireball

M D Azmi et al., J. Phys. G: Nucl. Part. Phys. 47 (2020) 045001

Rishabh Sharma

Physics in Collision 2023

Tsallis Statistics

 \star Various thermodynamic quantities can be evaluated using the following relations:

Entropy density:
$$s = -g \int \frac{d^3p}{(2\pi)^3} \left[f^q \ln_q f - f \right]$$

Number density: $n = g \int \frac{d^3p}{(2\pi)^3} f^q$
Energy density: $\epsilon = g \int \frac{d^3p}{(2\pi)^3} E f^q$
Pressure: $P = g \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{3E} f^q$
 $E_{ressure:} P = g \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{3E} f^q$

$$E = \text{energy}$$

$$g = \text{degeneracy}$$

$$\mu = \text{chemical potential (=0 for}$$

LHC energies)

$$T = \text{temperature}$$

$$q = \text{entropy index}$$

$$V = \text{volume}$$

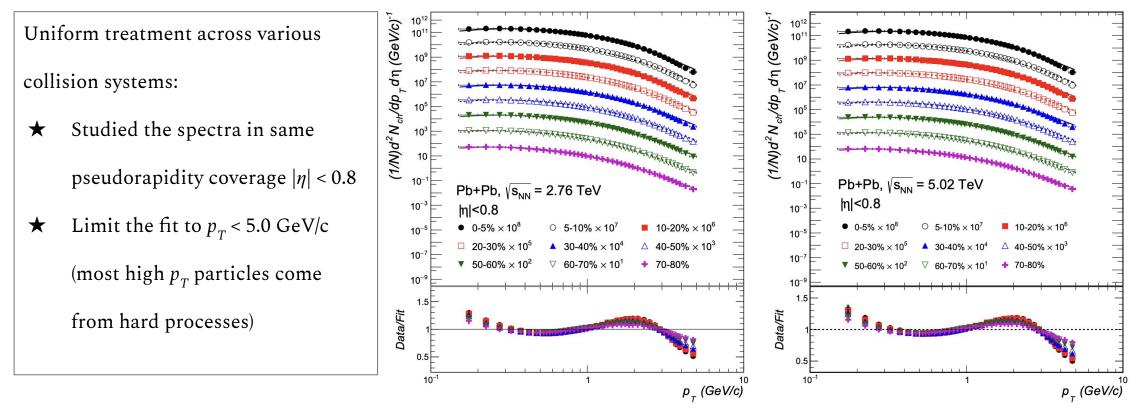
$$\eta = \text{pseudorapidity}$$

$$p = \text{momentum}$$

$$p_T = \text{transverse momentum}$$

$$m_T = \text{transverse mass} = \sqrt{(p_T^2 + m^2)}$$

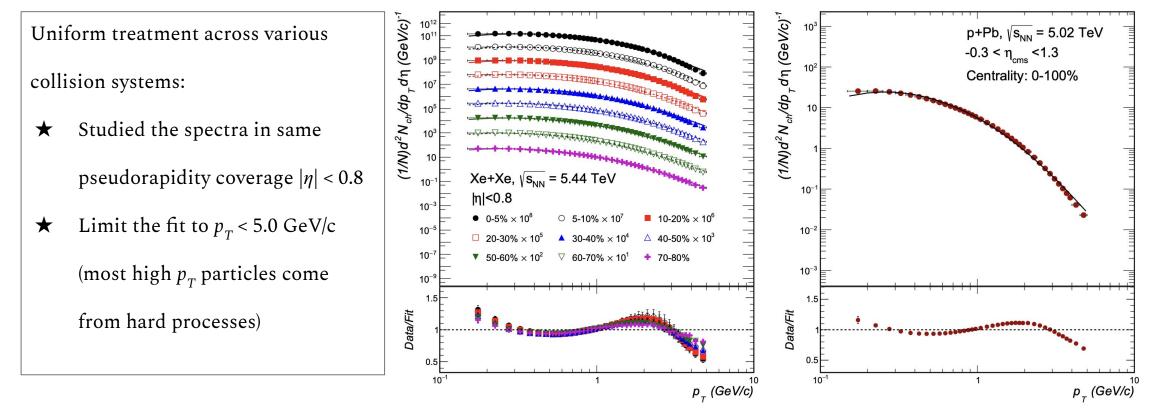
★ V, T, and q are used to extract various thermodynamic properties at KFO in the hadronic fireball


M D Azmi et al., J. Phys. G: Nucl. Part. Phys. 47 (2020) 045001

Rishabh Sharma

Physics in Collision 2023

Tsallis Fits (Pb+Pb collisions)


★ Charged hadron spectra in Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV is well described by Tsallis statistics

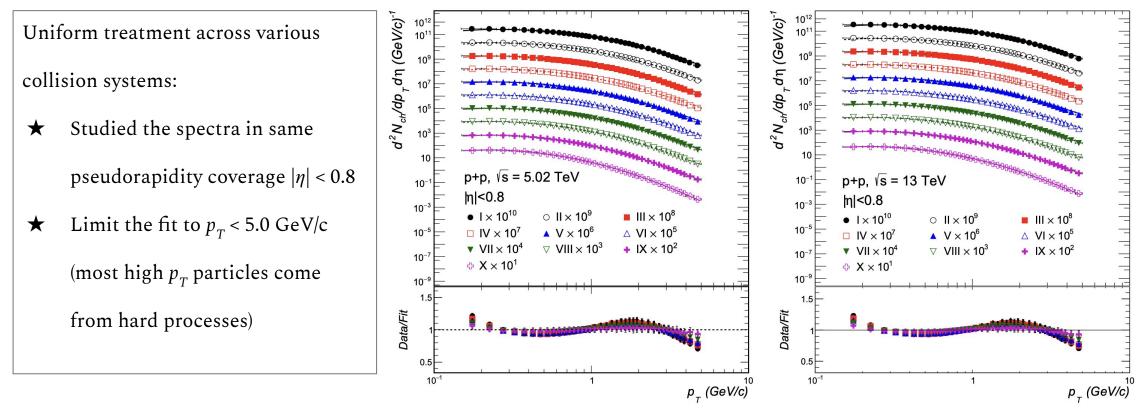
★ Spectra in peripheral collisions is described more accurately compared to central collisions

Data: ALICE - JHEP 2018, 13 (2018); PLB 788, 166 (2019); EPJ C 79 (2019)

Tsallis Fits (Xe+Xe and p+Pb collisions)

★ Charged hadron spectra in Xe+Xe at √s_{NN} = 5.44 TeV and p+Pb collisions at √s_{NN} = 5.02 TeV is well described by Tsallis statistics

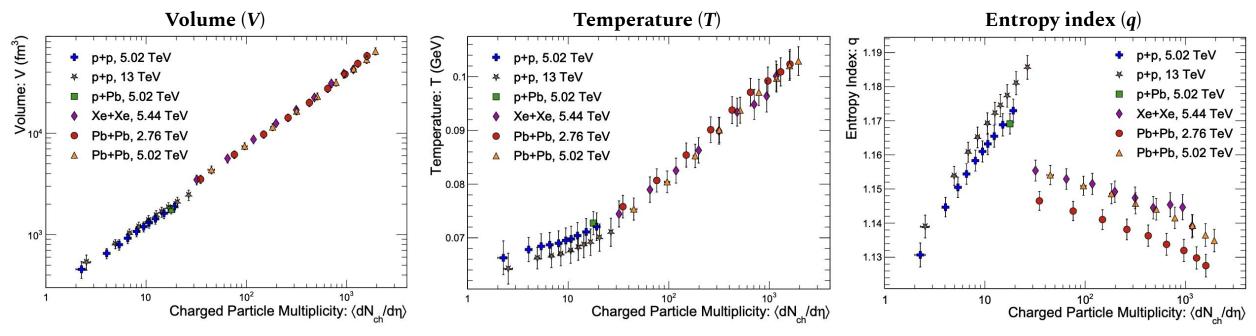
★ Spectra in peripheral Xe+Xe collisions is described more accurately compared to central collisions


Data: ALICE - JHEP 2018, 13 (2018); PLB 788, 166 (2019); EPJ C 79 (2019)

Rishabh Sharma

Physics in Collision 2023

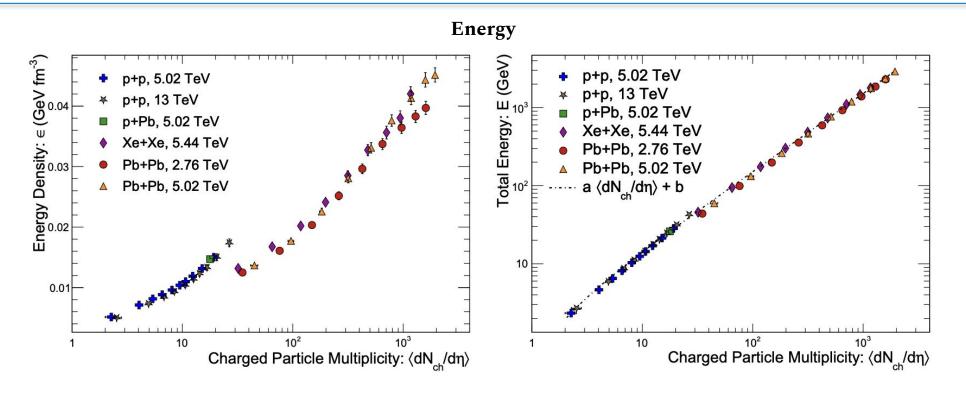
Tsallis Fits (p+p collisions)



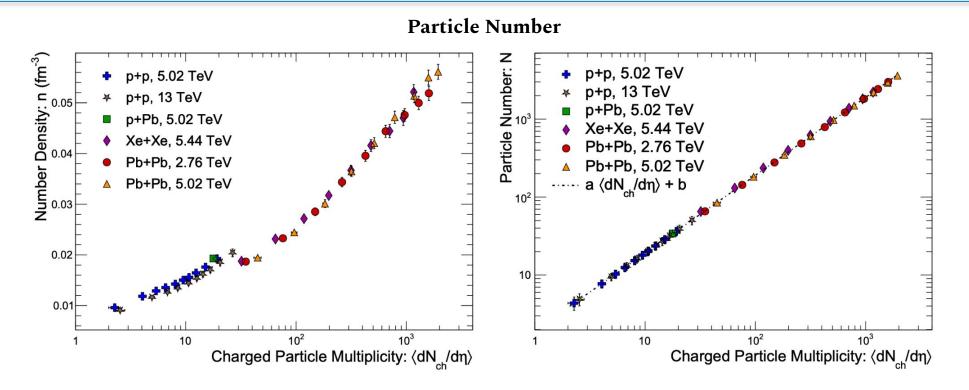
★ Charged hadron spectra in p+p at $\sqrt{s} = 5.02$ and 13 TeV is well described by Tsallis statistics

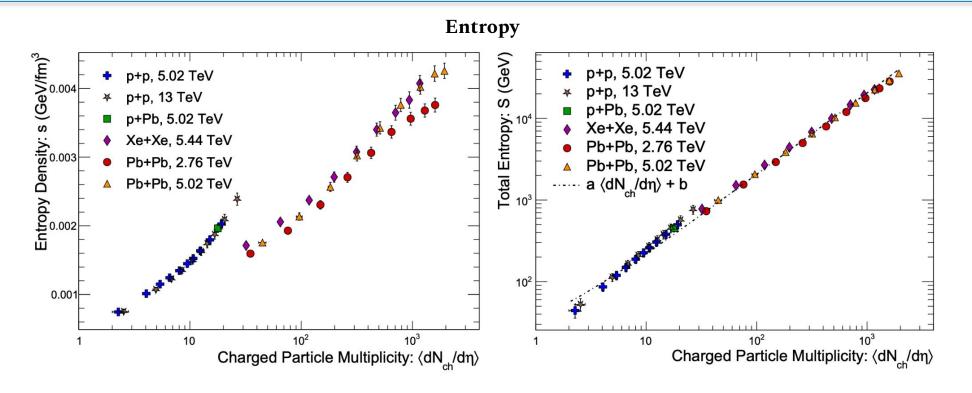
★ Spectra in low multiplicity p+p collisions is described more accurately compared to high multiplicity collisions

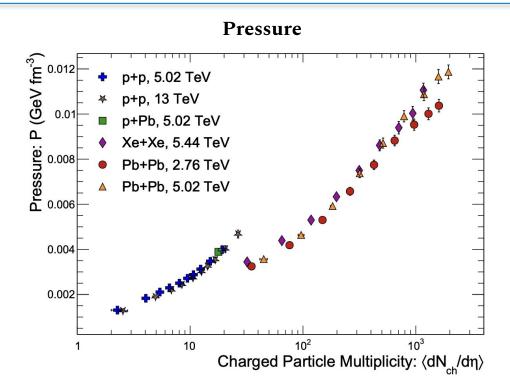
Data: ALICE - JHEP 2018, 13 (2018); PLB 788, 166 (2019); EPJ C 79 (2019)



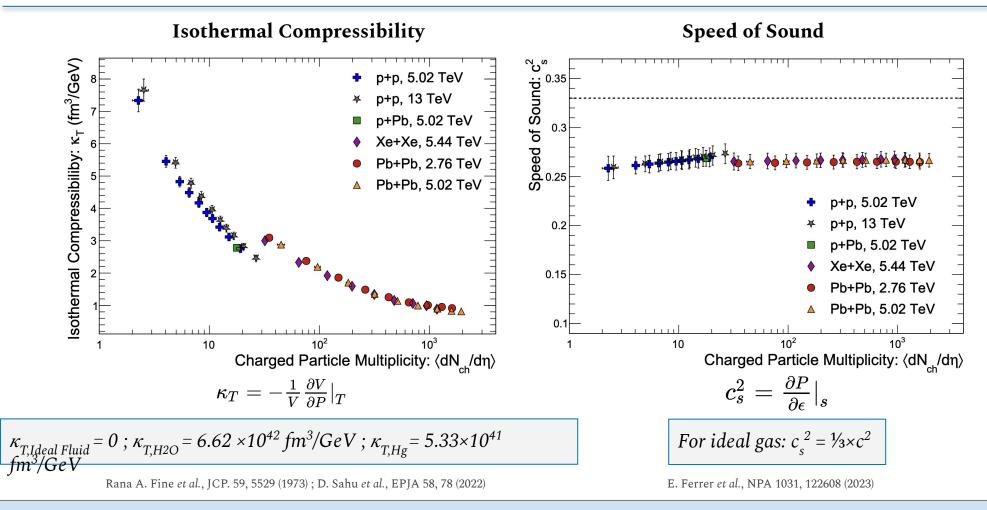
 $< dN_{ch}/d\eta >$ acts an indicator of the system size


- ★ V increase with increasing $\langle dN_{ch}/d\eta \rangle$
- ★ Rate of rise of V is slower in small collision systems
- ★ T increase with increasing $\langle dN_{ch}/d\eta \rangle$
- **★** Behaviour of q with $\langle dN_{ch'}/d\eta \rangle$ discriminates between small & large collision systems
- ★ q is higher for higher collision energies in similar systems


- \bigstar Energy density increases with increasing $\langle dN_{ch}/d\eta \rangle$
- ★ Rate of rise of energy density is different in small and large collision systems
 - Discontinuity around the common multiplicity region
- \bigstar Linear scaling is observed when total energy $E(=\varepsilon V)$ is studied as a function of $\langle dN_{ch}/d\eta \rangle$


- ★ Particle number density increases with increasing $\langle dN_{ch}/d\eta \rangle$
- ★ Rate of rise of particle number density is different in small and large collision systems
 - Discontinuity around the common multiplicity region
- **★** Linear scaling is observed when total particle number N(=nV) is studied as a function of $\langle dN_{ch}/d\eta \rangle$

- **★** Entropy density increases with increasing $\langle dN_{ch}/d\eta \rangle$
- **★** Rate of rise of particle number density is different in small and large collision systems
 - Discontinuity around the common multiplicity region
- ★ Linear scaling is observed when total entropy S(=sV) is studied as a function of $\langle dN_{ch}/d\eta \rangle$



\bigstar Pressure increase with increasing $\langle dN_{ch}/d\eta \rangle$

★ Pressure rises more rapidly in small collisions than in large collisions → higher initial densities in small collisions → larger pressure exerted against the surrounding environment

- **★** Isothermal compressibility is a measure of the extent to which the volume of a system changes in response to external pressure
- \star κ_T decreases as $\langle dN_{ch}/d\eta \rangle$ increases \rightarrow higher $\langle dN_{ch}/d\eta \rangle$ requires higher pressure to achieve a small change in volume
- ★ c_s^2 increases as we move towards higher higher $\langle dN_{ch}/d\eta \rangle \rightarrow$ suggesting near ideal behaviour at higher $\langle dN_{ch}/d\eta \rangle$

Summary

- We have studied the charged particle spectra in the framework of Tsallis Statistics in the following systems:
 - Pb+Pb at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV; Xe+Xe at $\sqrt{s_{NN}} = 5.44$ TeV; p+Pb at $\sqrt{s_{NN}} = 5.02$ TeV; p+p at $\sqrt{s} = 5.02$ and 13 TeV 0
- Tsallis fits are found to be in good agreement with the data \star
- We have studied various thermodynamic variables as a function of charged particle multiplicity $(\langle dN_{cl}/d\eta \rangle)$: \star
 - Volume (V) increases with increasing $\langle dN_{ch}/d\eta \rangle$, however, the rate of rise of volume is slower for small collision systems Ο
 - Temperature (T) increases with increasing $\langle dN_{ch}/d\eta \rangle$ 0
 - Entropy index (q) increases in small collision systems while it decreases in large collision systems with increasing $\langle dN_{ch'}/d\eta \rangle$ 0
 - Energy density (ϵ), number density (n), entropy density (s), and pressure (P) increase with increasing $\langle dN_{ch}/d\eta \rangle$ with a discontinuity between small 0 and large collision systems around the common multiplicity region
 - A linear dependence of total energy $(E=\varepsilon V)$, total particle number (N=nV), and total entropy (S=sV) is observed with $\langle dN_{cl}/d\eta \rangle$ Ο
 - Isothermal compressibility (κ_T) decreases while squared speed of sound (c_s^2) increases with increasing $\langle dN_{ch}/d\eta \rangle \rightarrow$ suggesting near ideal behaviour Ο at higher $\langle dN_{ch}/d\eta \rangle$
- Thermodynamic variables in small collision systems have a different behaviour compared to large collision systems around the \star common multiplicity region

