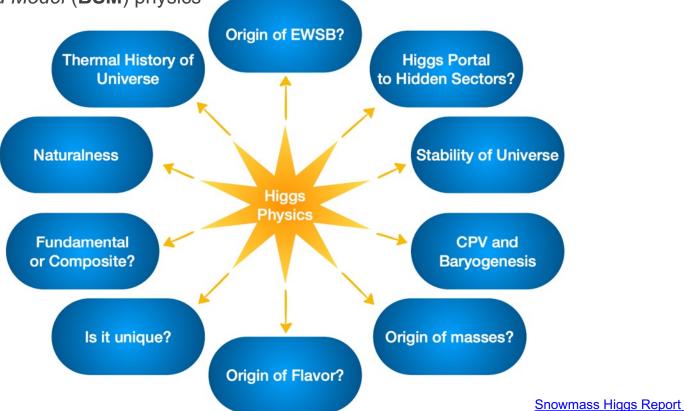
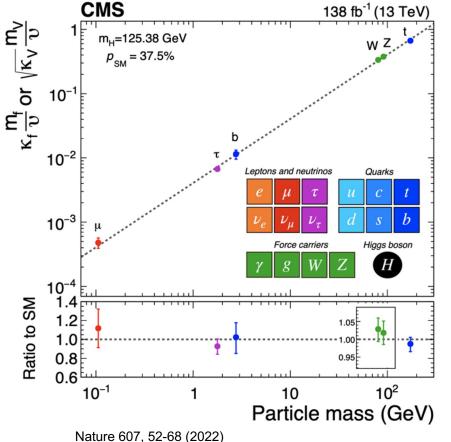


Rare processes and Searches for new Phenomena with **Higgs bosons**



Bernd Stelzer for the ATLAS & CMS Collaboration Physics in Collision Conference, Arica, Oct 10th, 2023



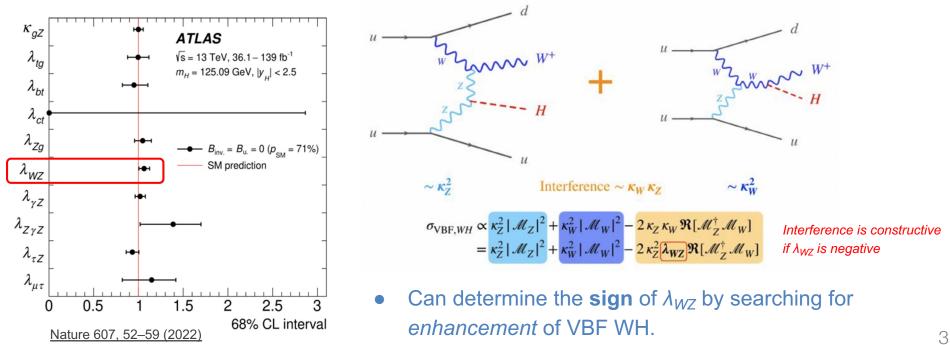
Introduction

The Higgs boson is **central** to **Standard Model** and *beyond Standard Model* (**BSM**) physics

Introduction

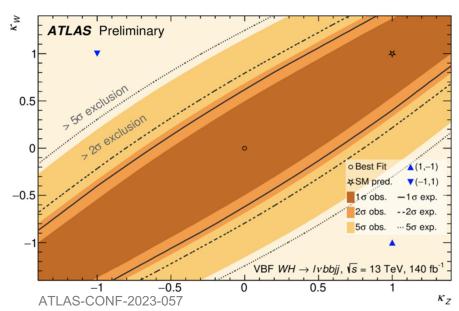
CMS

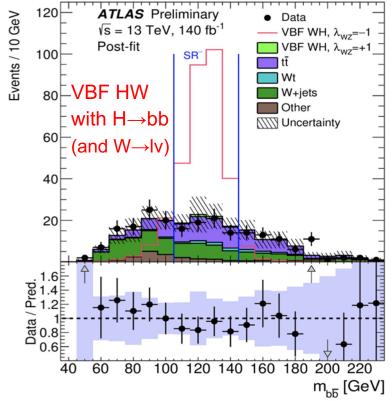
- In the past 11 years, since the Higgs boson discovery, we have learned a lot about its properties, coupling to bosons and 3rd generation fermions (see previous talk)
- Large LHC datasets can uncover rare Higgs
 boson processes e.g. couplings to the 2nd generation of fermions, processes with destructive interference and processes that are not possible at tree level
 - Physics Beyond the SM (**BSM**) could greatly enhance their rate, motivating these analyses
 - The Higgs boson could also directly couple to
 BSM phenomena



HIGGS boson

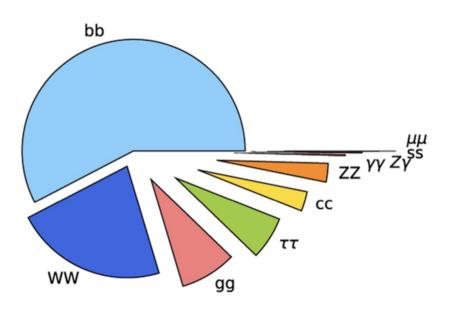
Rare Process, VBF HW


- Measuring the Higgs couplings to *W* and *Z* is essential for testing EWSB and custodial symmetry of the SM. Latest ATLAS result measure $\lambda_{WZ} = \kappa_W / \kappa_Z = 1.06 \pm 0.06$
- Currently *little* sensitivity to the **sign** of λ_{WZ}
- Destructive interference of VBF HW process leads to rare Higgs process in SM

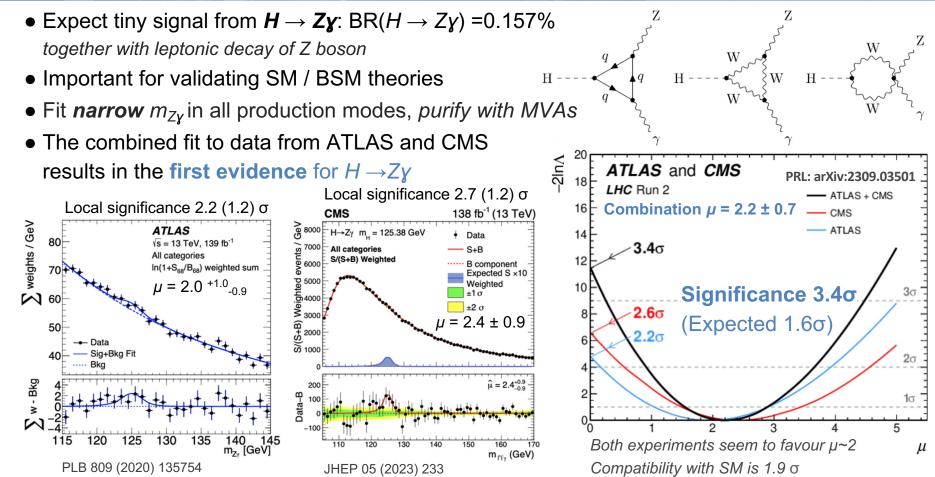


Rare Process, VBF HW

- Negative λ_{WZ} signal would be easily separable from background based on kinematics
- No excess is seen above SM prediction.
- Opposite sign couplings for κ_W , κ_Z consistent with other Higgs measurements are **excluded** at > 8 σ
 - *W*, *Z* couplings to Higgs have same sign

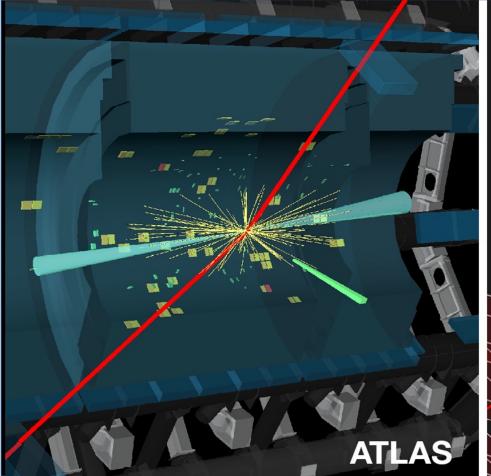


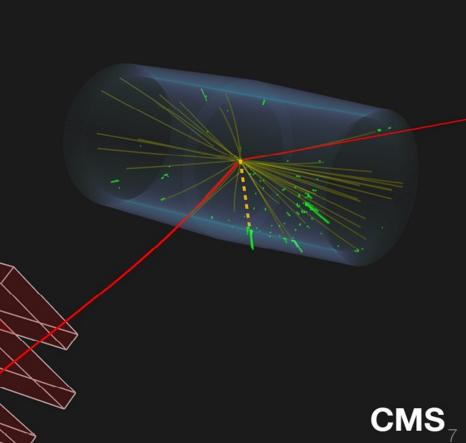
Higgs Rare Decays


Decay channel	Branching	fraction	(%)
bb	57.63	± 0.70	
WW	22.00	± 0.33	
$\mathbf{g}\mathbf{g}$	8.15	± 0.42	
ττ	6.21	± 0.09	
сс	2.86	± 0.09)
ZZ	2.71	± 0.04	
γγ	0.227	±0.005	
Zγ	0.157	± 0.009)
SS	0.025	±0.001	
μμ	0.0216	± 0.0004)

CMS/

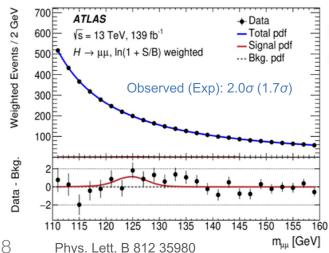
- Some rare processes also suffer from huge backgrounds, e.g. $H \rightarrow cc$ or ss
- Others searches depend on small BR of boson decay, e.g. $Z \rightarrow ee$, $\mu\mu$ (BR=3.4%)

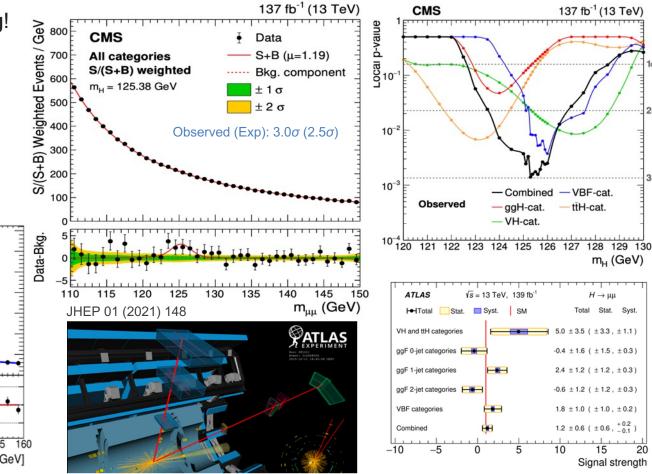

$H \rightarrow Z\gamma$ Decays



CMS

$H \rightarrow Z\gamma Decays$

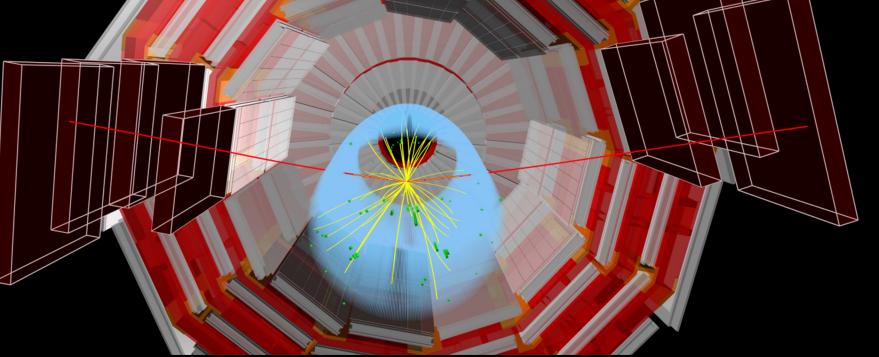


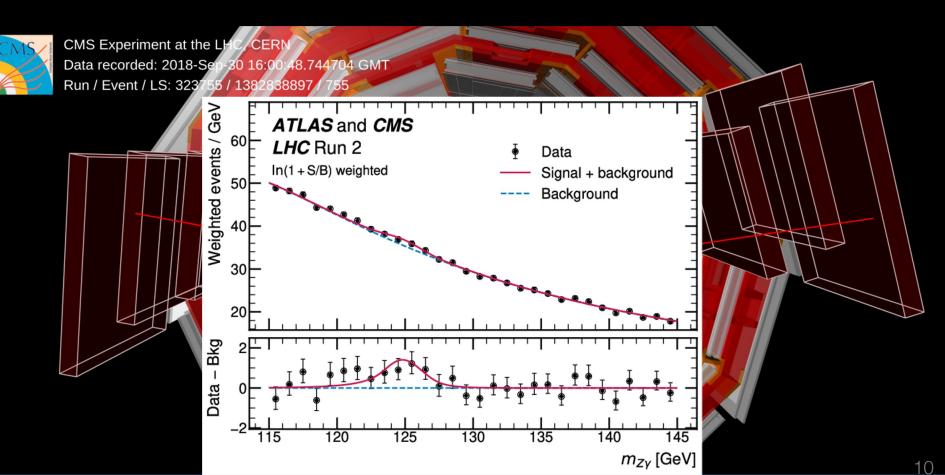

 2σ

• $H \rightarrow \mu \mu$ is very challenging! $BR(H \rightarrow \mu\mu) = 0.0216\%$

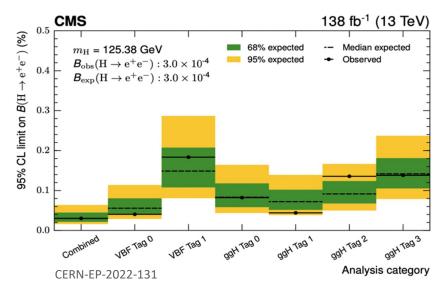
CMS

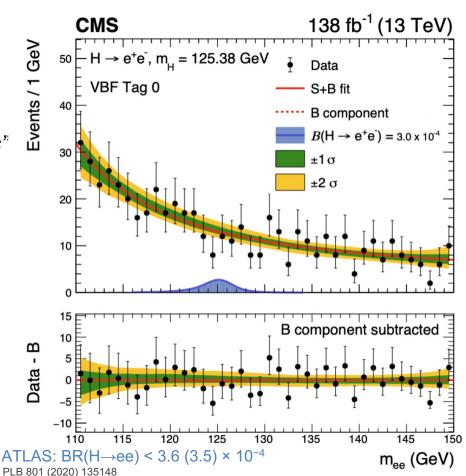
- Search for *narrow* m_{uu} in all production modes, increase purity with MVAs
- CMS first evidence with a 3σ signal significance!





CMS Experiment at the LHC, CERN Data recorded: 2018-Sep-30 16:00:48.744704 GMT Run / Event / LS: 323755 / 1382838897 / 755

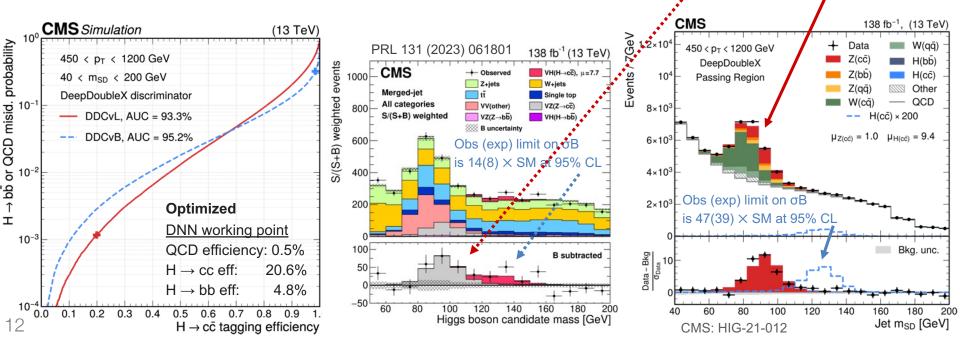




 Higgs decay to electron pairs has tiny BR(H → ee) = 0.0000005%

CMS

- Could be enhanced in BSM scenarios
- Search for narrow m_{ee} resonance in all production modes and BDT purified "tag regions"
- BR(H \rightarrow ee) < 3.0 × 10⁻⁴ at 95%CL (exp and obs)



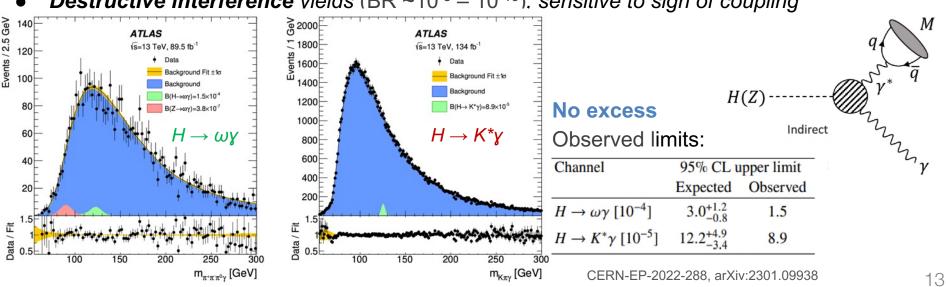
- Higgs→cc (charm) is a very challenging signature
 - Small branching ratio of 2.9% and difficulty of *c*-quark tagging given huge background rate
 - Search for ZH ($H \rightarrow cc$) **and** boosted $H \rightarrow cc$ events, reconstructed as a single large-radius jet
 - Use of $Z \rightarrow cc$ data to validate the method yields a first observation of $Z \rightarrow cc$ and $Z \rightarrow cc$ + high p_T jets!

 $Higgs \rightarrow cc$

• Use of Deep Neural Network **charm-tagging** technique essential!

$H \rightarrow Meson + \gamma$

Direct

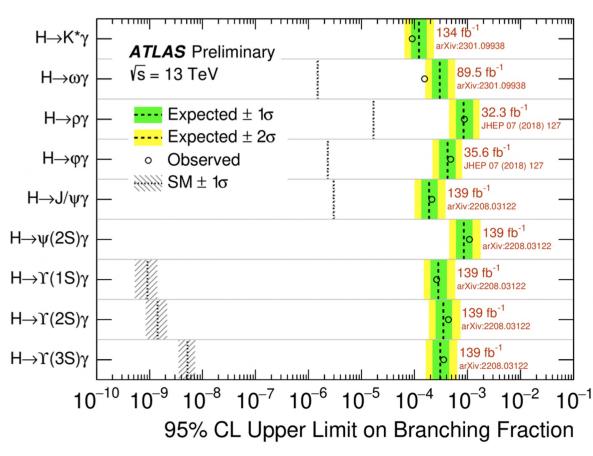

H(Z)

М

- Probe Higgs boson coupling to 1^{st} and 2^{nd} generation fermions in $H \rightarrow Meson + \chi$
- Test Flavour conserving coupling to u and d quarks $(H \rightarrow \omega \gamma)$ **Flavour violating** coupling to d and s quarks $(H \rightarrow K^* y)$
- Standard Model prediction are driven by two contributions:
 - **Direct interaction:** Scales with Yukawa coupling 0
 - **Indirect interaction**: $H \rightarrow \gamma^* \rightarrow M\gamma$ (M=meson) 0

CMS

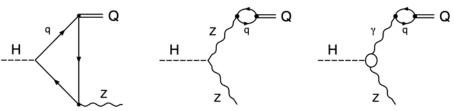
Destructive interference vields (BR $\sim 10^{-5} - 10^{-10}$). sensitive to sign of coupling

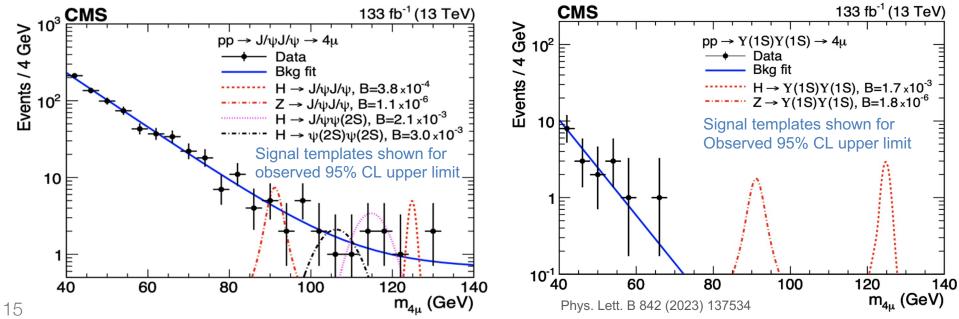


$H \rightarrow Meson + \gamma$

• Summary of searches using full Run-2 datasets:

CMS/


- b/c mesons:
 J/ψ, ψ(2S), Y(1S, 2S, 3S)
- Light/strange mesons: K^* and ω
- No significant excess, but many stringent limits!
- All results are statistically limited!
- Will make excellent use of larger Run-3 and HL-LHC datasets


Higgs → Quarkonia

- Higgs → vector Quarkonia can be searched for in experimentally clean four-muon final state
- Tiny expected SM branching fractions ~10⁻⁹ several orders of magnitude *below* sensitivity
- An observation would indicate BSM

CMS

No evidence for anomalously large BRs

$-LFV Higgs \rightarrow e\tau, \mu\tau$

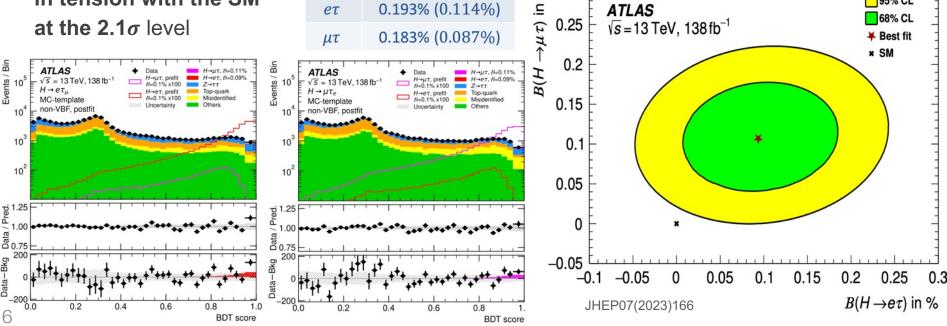
W

 $\nu_{\ell'}$

95% CL

68% CL

 $Y_{\ell\tau}$


H

- Search for Lepton Flavour Violating (LFV) decay of Higgs boson, with $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ decay modes
- No significant excess is observed and limits are obtained:

ετ

• The simultaneous fit is in tension with the SM at the 2.1 σ level

CMS,

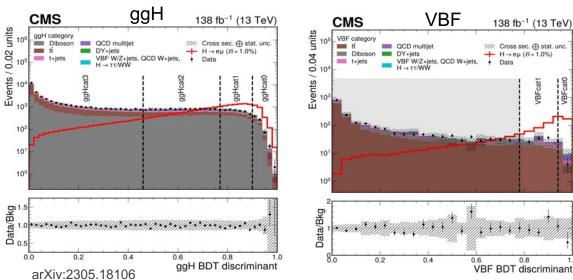
Obs. (Exp.) 95% Upper

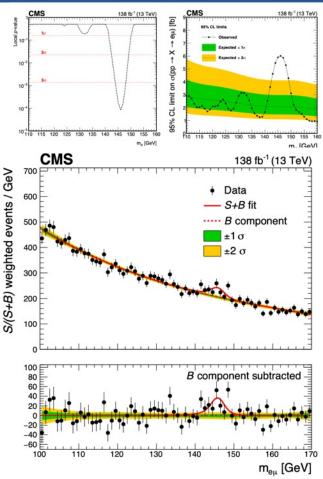
0.193% (0.114%)

0.3

0.25

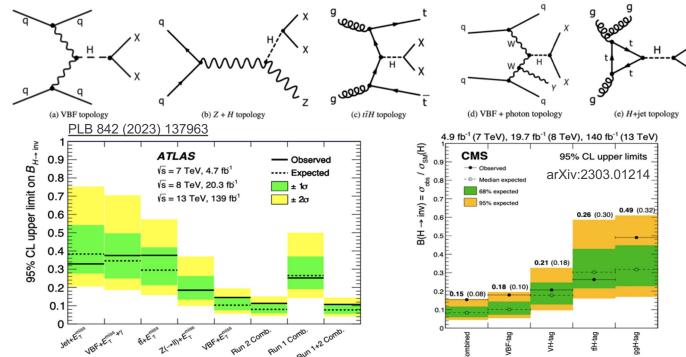
ATLAS


 $\sqrt{s} = 13 \text{ TeV}, 138 \text{ fb}^{-1}$

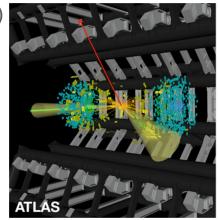

%

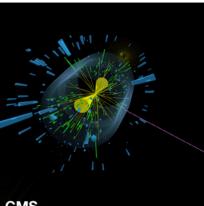
LFV Higgs $\rightarrow e\mu$

- Search for LFV Decay $H \rightarrow e\mu$
- Perform fit to m_{eµ} distribution across production categories (ggH and VBF) purified by BDT categories
- BR(H→eµ) < 4.4 (4.7) × 10⁻⁵ at 95%CL observed (exp)
- Scan for BSM Higgs boson: Modest excess in m_{eµ} distribution at 146 GeV: 3.8σ (local), 2.8σ (global) significance.



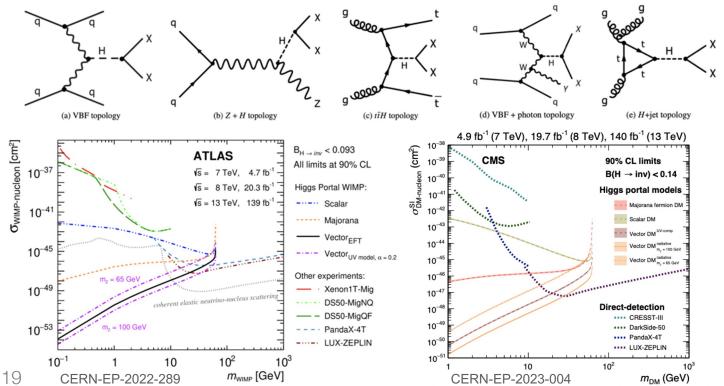
Higgs to Invisible

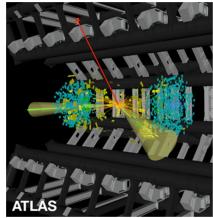

• Higgs-portal models to Dark Sector (e.g. Wilczek, Patt)

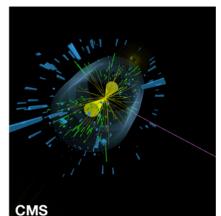

CMS,

- Within the SM, Higgs \rightarrow invisible decay is only H \rightarrow ZZ* \rightarrow 4v (BR ~ 0.1%)
- Searches for invisible Higgs decays, leading to missing p_T + X

VBF + "missing p_T"

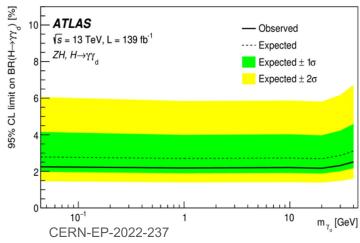

18 **Combined** ggH, VBF, VH, ttH; **CMS**: Br(H→inv) < 0.15 (0.08); **ATLAS**: Br(H→inv) < 0.107 (0.077) at 95% CL **CMS**


Higgs to Invisible


• Higgs-portal models to Dark Sector (e.g. Wilczek, Patt)

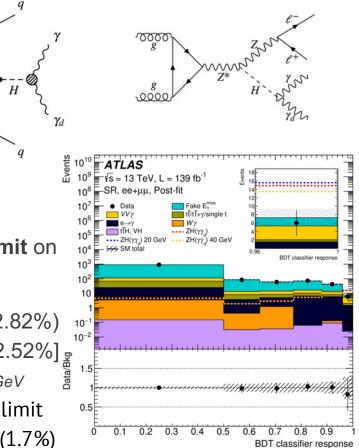
CMS

- Within the SM, **Higgs** \rightarrow invisible decay is only H \rightarrow ZZ* \rightarrow 4v (BR ~ 0.1%)
- Searches for invisible Higgs decays, leading to missing p_T + X



Dark Photon, $H \rightarrow \chi \chi_d$

- Search for Higgs boson decaying into a (mixed) photon and a dark photon (γ_d)
- Search in *ZH* production mode:


CMS.

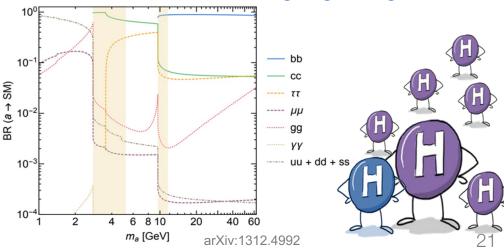
- Leptonic Z \rightarrow II decay for clean signature
- BDT to enhance purity in signal region
- Search in *VBF* production mode:
 - Scan Higgs mass m_{H} instead of $m\gamma_{d}$
- No excess of events above the SM expectation

Observed (exp) upper limit on BR(H $\rightarrow \gamma \gamma_d$) at 95% CL:

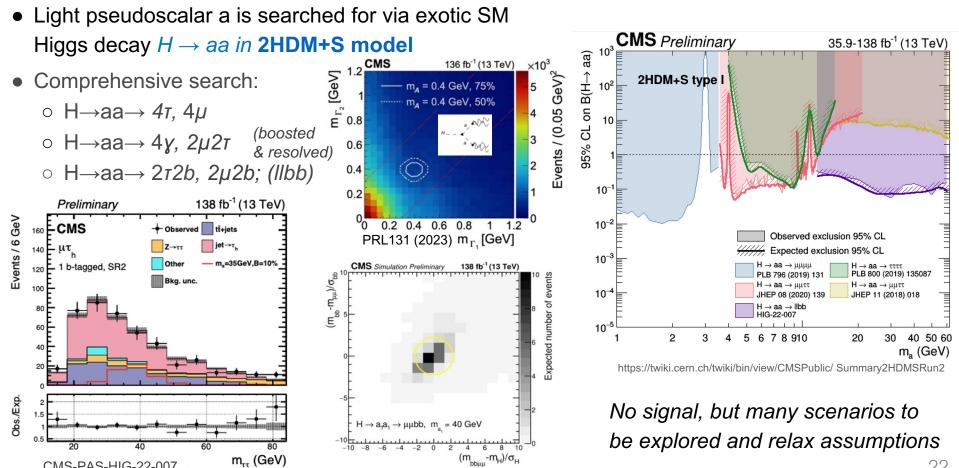
- Massless γ_d. ____
 Massive γ_d: [2.19% 2.52%] ^m/_g
 14 401 GeV VBF (m_H=125 GeV) upper limit on BR(H $\rightarrow \gamma \gamma_d$) of 1.8% (1.7%)

H→BSM Scalars

SM Higgs boson measurements are not the only part of LHC Higgs physics program


- Many BSM theories predict extended Higgs sector with additional scalars
- Allowed branching ratio to exotic decays O(10%)
- 2HDM is the simplest extension of the SM with: H^{\pm} , A(CP-odd), H and h (CP-even)
- Includes axion like particles (solution to strong CP problem Peccei–Quinn)
- Other extensions are considered e.g. MSSM, NMSSM, TRSM, 2HDM+S, g2HDM, ...

Example: 2HDM+S: 2 Higgs doublets models extended with one gauge singlet S

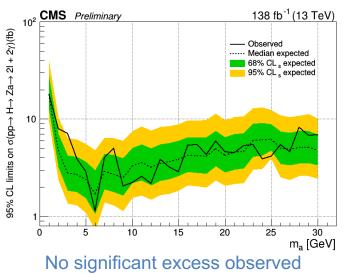

- $\circ~$ Predicts 7 physical Higgs states:
 - 3 Neutral scalars: h1 (SM like) h2, h3
 - 2 Charged Higgs: H[±]

CMS

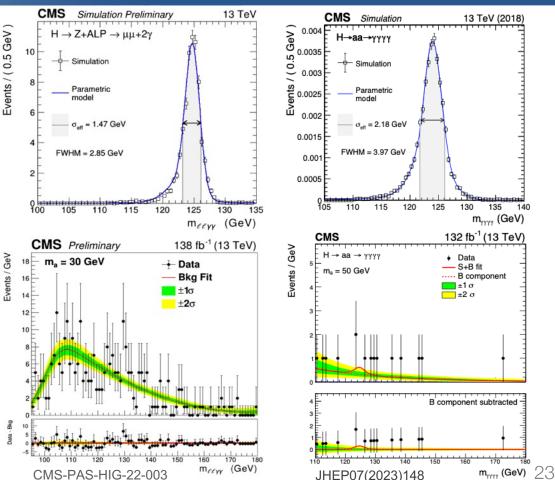
- 2 pseudoscalars Higgs: A, a
- $\circ~$ The branching ratios depend on
 - 4 Model types (I-IV) of fermion couplings
 - m_a (mass of the pseudoscalar)
 - $\tan \beta$ (ratio of the VEVs of the two doublets)

Higgs in 2HDM+S

CMS.

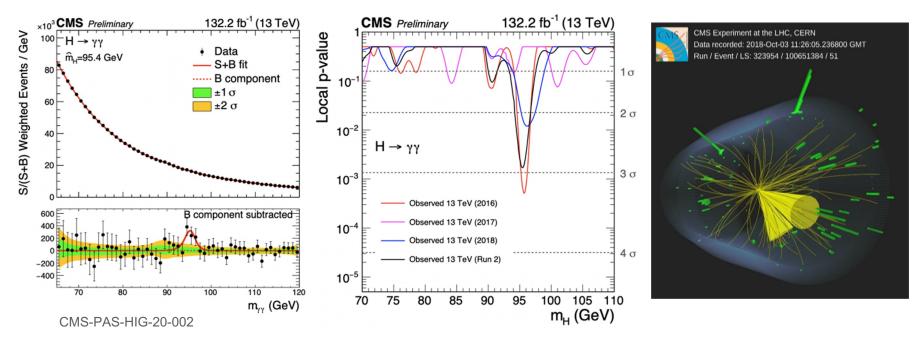

CMS-PAS-HIG-22-007

$H \rightarrow Za \rightarrow II\chi\chi$


• Dedicated serach for $H \rightarrow Za \rightarrow II\chi\chi$ and $\chi\chi\chi\chi$

CMS

- Use high-resolution 4-body invariant mass m_{//yy} and m_{yyyy}
- Sensitivity optimized using **BDTs** for *ee* and $\mu\mu$ channel


Events / GeV

Low Mass Higgs Boson?

- CMS performed a diphoton resonance search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV with full LHC Run 2 data.
- Modest excess at $m_{yy} = 95.4 \text{ GeV}$ with 2.9 σ local (1.3 σ global) significance.
- Large "look elsewhere effect" in high-resolution di-photon channel

Low Mass Higgs Boson

Model independent

100

ATLAS Preliminary - Observed

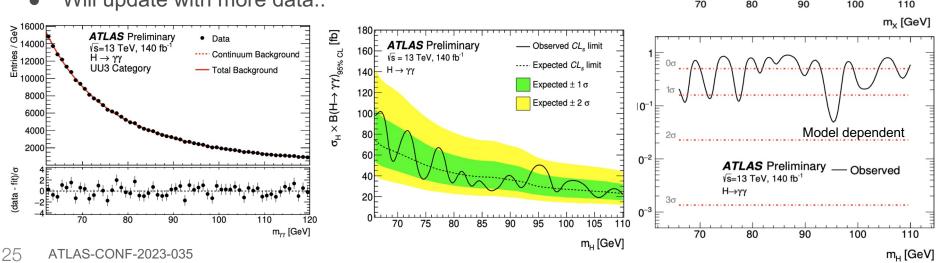
90

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

80

10-

10-4

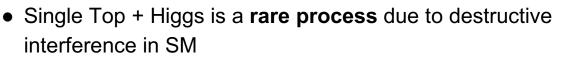

10-

70

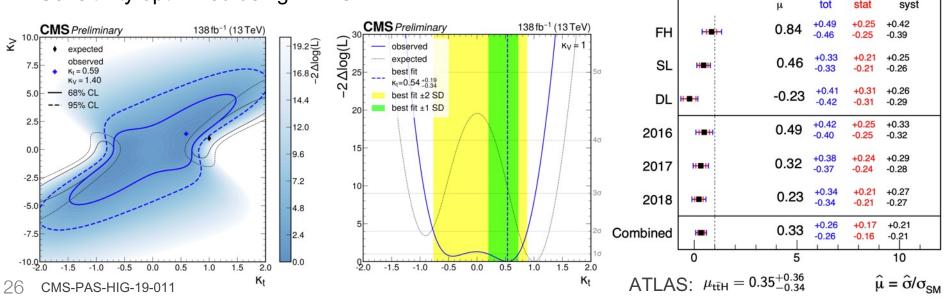
- ATLAS performed recently a similar analysis in range between m_{vv} = 66 and 110 GeV
- Perform two searches:

CMS.

- **Model independent** search for spin-0 particle (NWA) Ο (three categories based on photon conversion, UU, UC, CC)
- Model dependent search for light SM-like particle Ο (additionally use three BDT categories to purify sample)
- No significant excess observed in full Run-2 dataset
- Will update with more data...


Single Top + Higgs

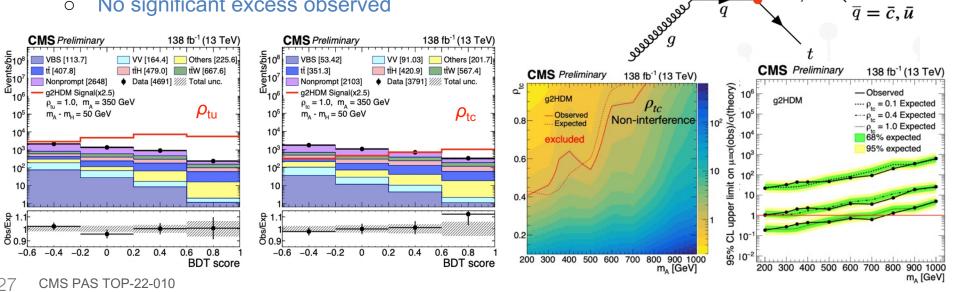
CMS Preliminary


W

138 fb⁻¹ (13 TeV)

- Sensitive to absolute value of the top Yukawa coupling, the Higgs boson coupling to vector bosons and their **relative sign**
- New CMS result on search for tH production with $H \rightarrow bb$
- Sensitivity optimized using ANNs

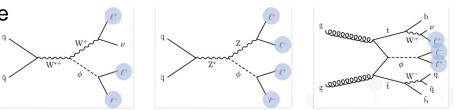
- Search for new couplings ρ_{tu} , ρ_{tc} in Higgs decays in **same-sign tt final states**
- Possible explanations for the *electroweak baryogenesis* and muon *anomalous magnetic moment* in the generalized 2HDM model with FCNC H/A Higgs Yukawa couplings

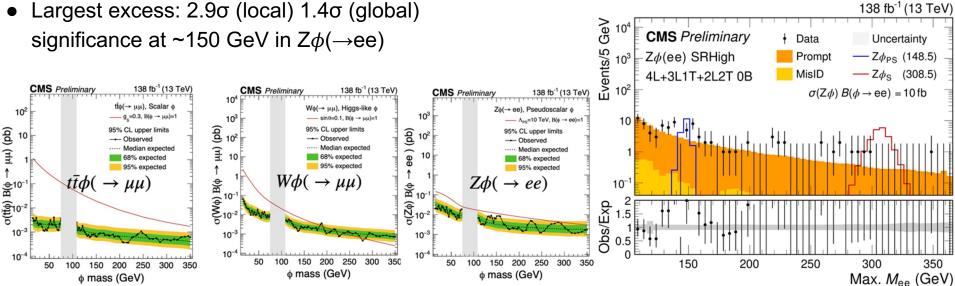

 $H/A \rightarrow tq$

tu,tc

H/A

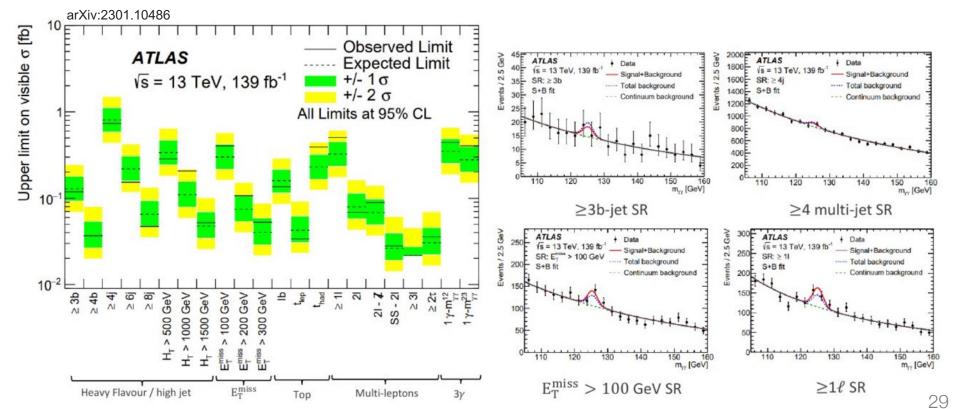
 $\rho_{\rm tu,tc}$


- Analysis optimized for top-pair final state (BDT)
 - Search same sign dilepton final states ($e^{\pm}e^{\pm}$, $\mu^{\pm}\mu^{\pm}$, $e^{\pm}\mu^{\pm}$) Ο
 - No significant excess observed Ο



- First search for a **BSM spin-0 scalar** ϕ resonance in association with bosons (V=W,Z) or tops (tt)
- Target multilepton final state with $\phi \rightarrow dilepton$ Considering decays into all lepton flavors
- Largest excess: 2.9σ (local) 1.4σ (global) significance at ~150 GeV in $Z\phi(\rightarrow ee)$

CMS-PAS-EXO-21-018


(qd) (ท่ท่ ←

Higgs + *Anything*...

• Explores Higgs produced with additional objects to probe BSM in model independent way

CMS

 \rightarrow I.e. Signature-based search for 125 GeV Higgs \rightarrow yy produced <u>with</u> additional objects

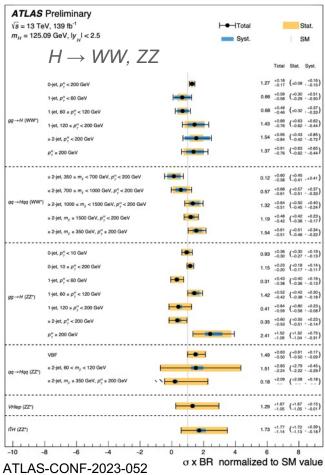
30

Effective Field Theory (EFT)

- To maximize sensitivity to possible BSM effects in Higgs measurements, **ATLAS and CMS** target *well-defined kinematic regions*, split by production and decay mode The set of *σB* results are used in EFT interpretations
- Expand the SM Lagrangian with higher dimensional operators, to parameterize BSM effects

$$\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i^{d=6}}{\Lambda^2} \mathcal{O}^{d=6} + \sum_{i} \frac{c_i^{d=8}}{\Lambda^4} \mathcal{O}^{d=8} + \dots$$

Deviation from SM quantified by d=

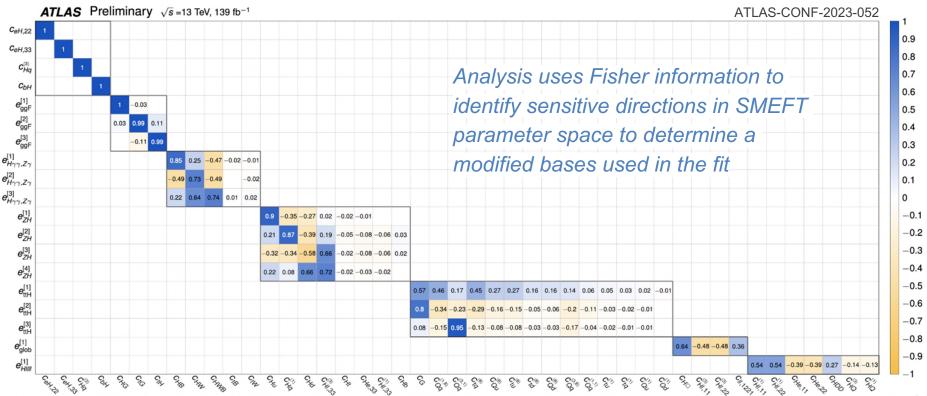

$$\sigma \propto \left| \mathcal{M}_{\rm SM} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{M}_i^{(6)} + \sum_{i} \frac{c_i^{(8)}}{\Lambda^4} \mathcal{M}_i^{(8)} \right|^2$$
$$= \left| \mathcal{M}_{\rm SM} \right|^2 + \underbrace{\sum_{i} 2Re\left(\mathcal{M}_{\rm SM}^* \mathcal{M}_i^{(6)} \right) \frac{c_i^{(6)}}{\Lambda^2}}_{\text{Linear term (interference with SM)}} + \underbrace{\sum_{ij} 2Re\left(\mathcal{M}_i^{(6)*} \mathcal{M}_j^{(6)} \right) \frac{c_i^{(6)} c_j^{(6)}}{\Lambda^4}}_{\text{Quadratic term (purely BSM effect)}}$$

	$\begin{pmatrix} 1 \end{pmatrix}$
+O	$\left(\frac{1}{\Lambda^6} \right)$
	$\langle 1 \rangle$

	^C H1.22	(11.1
uantified by d=6 Wilson coefficients		$(H^{\dagger}i$
(2) 1^2	$c_{He,11}$	$(H^{\dagger}i$
$\left[\sum_{i=1}^{n} c_i^{(8)} + c_i^{(8)}\right]^{-1}$	$C_{He,22}$	$(H^{\dagger}i$
$\sum \frac{i}{\Lambda^4} \mathcal{M}_i^{(\circ)}$	<i>c</i> _{<i>He</i>,33}	$(H^{\dagger}i$
	$c_{Hq}^{\scriptscriptstyle (1)}$	$(H^{\dagger}$
(6) $C_{i}^{(6)}$ $\sum_{a \in \mathbb{Z}} (x_{i}^{(6)*} + y_{i}^{(6)}) c_{i}^{(6)} c_{i}^{(6)}$	$c_{Hq}^{_{(3)}}$	$(H^{\dagger}i$
$_{\mathrm{M}}\mathcal{M}_{i}^{(6)}\left(\frac{c_{i}^{(6)}}{\Lambda^{2}}\right) + \sum 2Re\left(\mathcal{M}_{i}^{(6)*}\mathcal{M}_{j}^{(6)}\right)\frac{c_{i}^{(5)}c_{j}^{(5)}}{\Lambda^{4}}$	c_{Hu}	$(H^{\dagger}i$
	c_{Hd}	$(H^{\dagger}i$
ference with SM) Quadratic term (purely BSM effect)	$c_{HQ}^{\scriptscriptstyle (1)}$	(H^{\dagger})
	$c_{HQ}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i)$
Neglect linear d=8 term, and	c_{Ht}	(H
model-dependent truncation	c _{Hb}	$(H^{\dagger}$

on coefficient	Operator	Wilson coefficient	Operator
c _H	$(H^{\dagger}H)^3$	$c_{Qq}^{(1,1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{q}\gamma^{\mu}q)$
$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	$c_{Qq}^{(1,8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{q}T^a\gamma^\mu q)$
c_G	$f^{abc}G^{a u}_\mu G^{b ho}_ u G^{c\mu}_ ho$	$c_{Qq}^{(3,1)}$	$(\bar{Q}\sigma^i\gamma_\mu Q)(\bar{q}\sigma^i\gamma^\mu q)$
CW	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	(3,8)	$(\bar{Q}\sigma^i T^a \gamma_\mu Q)(\bar{q}\sigma^i T^a \gamma^\mu q)$
C _{HDD}	$\left(H^{\dagger}D^{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	c^{Qq}_{qq}	$(\bar{q}\sigma^i\gamma_\mu q)(\bar{q}\sigma^i\gamma^\mu q)$
C _{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	c_{qq} $c_{tu}^{(1)}$	
CHB	$H^{\dagger}HB_{\mu u}B^{\mu u}$		$(\bar{t}\gamma_{\mu}t)(\bar{u}\gamma^{\mu}u)$
C _{HW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$	$c_{tu}^{(8)}$	$(\bar{t}T^a\gamma_\mu t)(\bar{u}T^a\gamma^\mu u)$
C _{HWB}	$H^\dagger au^I H W^I_{\mu u} B^{\mu u}$	$c_{td}^{(1)}$	$(\bar{t}\gamma_{\mu}t)(\bar{d}\gamma^{\mu}d)$
$c_{Hl,11}^{_{(1)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{l}_{1}\gamma^{\mu}l_{1})$	$c_{td}^{(8)}$	$(\bar{t}T^a\gamma_\mu t)(\bar{d}T^a\gamma^\mu d)$
$c_{Hl,22}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{2}\gamma^{\mu}l_{2})$	$c_{Qu}^{(1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{u}\gamma^{\mu}u)$
$c_{Hl,33}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{3}\gamma^{\mu}l_{3})$	$c_{Qu}^{(8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{u}T^a\gamma^\mu u)$
$c_{Hl,11}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\overline{l}_{1}\tau^{I}\gamma^{\mu}l_{1})$	$c_{Qd}^{(1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{d}\gamma^{\mu}d)$
$c_{Hl,22}^{_{(3)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{2}\tau^{I}\gamma^{\mu}l_{2})$	$c_{Qd}^{(8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{d}T^a\gamma^\mu d)$
$c_{Hl,33}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{3}\tau^{I}\gamma^{\mu}l_{3})$	$c_{tq}^{(1)}$	$(\bar{q}\gamma_{\mu}q)(\bar{t}\gamma^{\mu}t)$
$c_{He,11}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{1}\gamma^{\mu}e_{1})$	$c_{tq}^{_{(8)}}$	$(\bar{q}T^a\gamma_\mu q)(\bar{t}T^a\gamma^\mu t)$
$c_{He,22}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{2}\gamma^{\mu}e_{2})$	C _{eH,22}	$(H^{\dagger}H)(\bar{l}_{2}e_{2}H)$
<i>c_{He,33}</i>	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{3}\gamma^{\mu}e_{3})$	СеН,33	$(H^{\dagger}H)(\bar{l}_{3}e_{3}H)$
$c_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)$	CuH	$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}u\widetilde{H})$
$c_{Hq}^{_{(3)}}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}\tau^{I}\gamma^{\mu}q)$	c_{tH}	$(H^{\dagger}H)(\bar{Q}\widetilde{H}t)$
c _{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	C _{bH}	$(H^{\dagger}H)(ar{Q}Hb)$
C_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	c_{tG}	$(\bar{Q}\sigma^{\mu\nu}T^{A}t)\widetilde{H}G^{A}_{\mu\nu}$
$c_{HQ}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{Q}\gamma^{\mu}Q)$	CtW	$(\bar{Q}\sigma^{\mu\nu}t)\tau^I \tilde{H} W^I_{\mu\nu}$
$c_{HQ}^{\scriptscriptstyle (3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{Q}\tau^{I}\gamma^{\mu}Q)$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	C_{tB}	$(\bar{Q}\sigma^{\mu\nu}t)\widetilde{H}B_{\mu\nu}$
c _{Ht} c _{Hb}	$(H^{\dagger}i \overleftrightarrow{D}_{\mu}H)(t\gamma^{\mu}t) (H^{\dagger}i \overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$	c _{11,1221}	$(\bar{l}_1\gamma_\mu l_2)(\bar{l}_2\gamma^\mu l_1)$
c _{Hb}	$(H^{\dagger}i\widetilde{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$	<i>c</i> _{<i>ll</i>,1221}	$(\bar{l}_1\gamma_\mu l_2)(\bar{l}_2\gamma^\mu l_1)$

	Preliminary	H	Stat.
	eV, 139 fb ⁻¹	Syst.	SM
$m_{H} = 125$.09 GeV, ly 1 < 2.5		SM
	$H \rightarrow \gamma \gamma, Z \gamma, t t$	H, tH	otal Stat. Syst.
	0-jet, p ^µ ₇ < 10 GeV ►	0.66	0.27 (+0.24 , +0.12
	0-jet, 10 = p_{γ}^{H} < 200 GeV	1.24	0.18 (+0.15 - +0.10 0.17 (+0.150.00
	1-jet, p ^µ _γ < 60 GeV	1.16	0.39 (+0.36 , +0.5) 0.38 (+0.36 , -0.1)
	1-jet, 60 ≤ p ^H _T < 120 GeV	1.14	0.40 (+0.33 . +0.20 0.36 (+0.330.10
	1-jet, 120 s p ^N ₇ < 200 GeV	0.93	0.57 (+0.53 +0.20
gg →H (үү)	≥ 2-jet, m _j < 350 GeV, p ^H ₂ < 120 GeV	0.58	0.56 (+0.53 +0.11
	≥ 2 -jet, $m_j < 350$ GeV, $120 \le p_{\gamma}^{\prime\prime} < 200$ GeV	H 1.31	0.50 (+0.48 +0.15
	≥ 2-jet, m _j ≥ 350 GeV, p ^H ₁ < 200 GeV	1.09	0.95 (-0.91 -0.30
	200 s p ^v _r < 300 GeV	1.56	0.45 (+0.41 +0.10
	300 ≤ p ^v _r < 450 GeV	0.17	0.56 (+0.54 +0.54
	p ⁺ ₇ ≥ 450 GeV		1.47 (*1.42 *0.4 1.18 (-1.15 * -0.2
	« 1-jet and VH-veto		0.96 (-0.90 +0.30
	> 2-jet, VH-had	0.21	0.74 (+0.72 +0.54
	≥ 2 -jet, 350 $\le m_j < 700$ GeV, $p_{\gamma}^{\vee} < 200$ GeV	1.28	0.80 (-0.61 +0.51
qq→Hqq (ŗỵ)	≥ 2-jet, 700 ≤ m_j < 1000 GeV, p_j^H < 200 GeV	1.47	0.84 (0.72 +0.43
	≥ 2 -jet, $m_j \ge 1000$ GeV, $p_{\gamma}^{N} < 200$ GeV	H 1.31	0.46 (+0.36 +0.21
	≥ 2-jet, 350 ≤ m_g < 1000 GeV, p_g^H ≥ 200 GeV		0.74 (+0.73 +0.13
	≥ 2-jet, m _j ≥ 1000 GeV, p ^N ₇ ≥ 200 GeV		0.67 (+0.61 +0.20 0.57 (-0.520.25
	p ^v ₂ < 150 GeV	1.75	0.82 (+0.80 +0.50 0.73 (-0.720.00
qq→Hiv (yy)	p ^v ₇ = 150 GeV		
		-0.64	0.88 (+0.87 ,+0.13
ggiqq→Hll/vv (ry) p ^v ₇ < 150 GeV		
	p, # 100 GeV		0.92 -0.91 + -0.16
	<i>p</i> ^{<i>H</i>} ₇ < 60 GeV	0.83	0.82 (+0.81 +0.11
tîH (₁₁₁)	60 s p ^v ₇ < 120 GeV ►		0.60 (+0.59 +0.00
	120 ≈ p ^N ₇ < 200 GeV	0.65	0.64 (+0.63 +0.15
	200 « p ^N _r < 300 GeV	1.23	0.81 (-0.80 +0.11
	<i>p</i> ^H ₇ ≥ 300 GeV	1.17	0.96 (+0.95 +0.16 0.75 (-0.74 + -0.15
1H (17)	·····	2.06	4.13 (+3.94 +1.25 3.27 (-3.140.96
			0.97 (+0.88 -0.4
H(Z Y)		2.05	0.97 (+0.88 +0.4 0.93 (-0.870.3
	-6 -4 -2 0	2 4 6 8	10


√s = 13 TeV m _H = 125.09	, 139 fb ⁻¹ 9 GeV, ly _H I < 2.5		Syst.	Stat.
	$H \rightarrow \tau \tau$, b	b, μμ		
				Total Stat. Syst.
	1-jet, 120 s p_{γ}^{n} < 200 GeV	HH		.19 +0.68 (+0.41 +0.55
	\ge 1-jet, $m_j < 350~{\rm GeV}, 0 \le p_{\gamma}^{\rm v} < 60~{\rm Ge}$		0	31 ± 0.94 (±0.56 , ±0.75
99 →H (++)	\approx 2-jet, m_g < 350 GeV, 120 $\propto p_{\gamma}^{\rm H}$ < 200	Gev H	0	.60 +0.87 -0.78 (+0.54 , +0.68
	a 2-jet, m_j a 350 GeV, $\rho_{\gamma}^{\prime\prime}$ < 200 GeV	⊢ −	• · · · · · · · · · · · · · · · · · · ·	.55 +2.33 (+1.31 +1.92 -1.56 (-1.30 + -1.36
	$200 \le p_{\gamma}^{\prime\prime} < 300 \; {\rm GeV}$	H	1	.02 +0.55 (+0.31 +0.46 -0.41 (-0.30 -0.28
	ρ ^µ ₇ ≥ 300 GeV		1	27 +0.77 (+0.46 +0.61 -0.45 + -0.31
	≥ 2-jet, 60 ≤ m, ≤ 120 GeV			.97 *0.66 (*0.55 *0.36 -0.63 (*0.55 *0.36
φα→Ηφα (ττ)	≥ 2-jet, m _j ≥ 350 GeV	-		.80 +0.23 (-0.53 +-0.34 .80 +0.23 (+0.17 +0.15 -0.20 (+0.16 +-0.12
tĨH (m)		H -I	1	24 +1.35 (+1.11 +0.77 -1.12 (-0.96 + -0.55
qq →Hqq (bb)			0	.98 +0.39 (=0.33 , +0.20 -0.38 (=0.33 , -0.18
	$150 \le \rho_{\gamma}^{\gamma} < 250 \text{ GeV}$	H ee H	0	79 +0.50 (+0.34 +0.37 -0.49 (-0.33 +0.36
qq →HIv (bb)	250 s $\rho_{\gamma}^{\gamma}<400~{\rm GeV}$		1	10 +0.41 (+0.35 +0.20 -0.38 (-0.34 + -0.18
	<i>p</i> ^v ₇ ≥ 400 GeV	H	1	.50 +0.93 (+0.78 +0.51 -0.83 (-0.72 + -0.41
	$75 \le p_{\gamma}^{\gamma} < 150 \text{ GeV}$	H -I	0	.90 +0.71 (±0.47 , +0.52
gg/qq →Hll/vv (bb)	$150 \le p_{\tau}^{\vee} < 250 \; \mathrm{GeV}$	H H	1	.13 -0.37 (+0.27 , +0.25
99r94	$250 \le p_{\tau}^{\vee} < 400 \; \mathrm{GeV}$		1	.01 -0.39 (+0.35 . +0.17
	$p_T^{\nu} \approx 400 \text{ GeV}$	H H	0	29 +0.92 (+0.76 +0.53
	p ^H ₂ < 120 GeV			
	$p_{\gamma}^{\nu} < 120 \text{ GeV}$ 120 s $p_{\gamma}^{\nu} < 200 \text{ GeV}$			10 +1.05 (+0.48 , +0.94 -0.99 (+0.48 , -0.87 0.22 +1.02 (+0.72 +0.73 -0.07 +0.75
tĨH (bb)	$200 \le p_{\gamma}^{H} < 300 \text{ GeV}$			98 +0.91 (+0.71 +0.57 -0.86 (-0.680.53
	$300 \le p_{\gamma}^{\prime\prime} < 450 \text{ GeV}$			0.23 +0.73 (+0.58 +0.45 -0.72 (-0.54 + -0.47
	p ^H ₇ > 450 GeV ⊢		4	0.19 +1.48 (+1.06 +1.03 -1.40 (-0.911.06
gg →H, tĨH (μμ)			0	.54 × 0.85 (×0.83 , +0.22
qq→Hqq, VH (µµ)				23 +1.32 (+1.28 +0.31 -1.24 (-1.22 + -0.25
-8 -	-6 -4 -2	0 2	4 6	8
<i>gg →H</i> (bb)	450 ≤ p ^H ₇ < 650 GeV	•••••		4.2 +6.4 (+5.0 +3.9 -5.0 +7.9 8.6 +14.7 (+10.3 +10.4 -12.6 (+10.2 +-7.4
1				8.6 -12.6 -10.2 -7.4

31

Data is currently insufficient to constrain all Wilson Coefficients simultaneously!

CMS

 \rightarrow Motivate a modified basis reducing the number of free parameters in the fit (39 \rightarrow 19 shown here)

ATLAS Preliminary ATLAS-CONF-2023-052 \sqrt{s} =13 TeV, 139 fb⁻¹, m_H = 125.09 GeV SMEFT $\Lambda = 1$ TeV $H \rightarrow \gamma\gamma$ $H \rightarrow Z\gamma$ $H \rightarrow WW^* \rightarrow l\nu l\nu$ Expected contribution production decay H $\rightarrow 77^{*} \rightarrow 4$ 0.4 $H \rightarrow b\bar{b}$ $H \rightarrow \tau \tau$ The production and decay channels 0.2 $H \rightarrow \mu\mu$ agF contributing to the sensitivity VBF 0.8 WH 0.6 ZH 0.4 t tH tH 0.2 8 inclusive 0.32 10¹ Linear (obs.) Linear (exp.) ö) [TeV] Symmetrized uncertainty (σ) 10⁰ robed Scale (A/ 10-1 10-10 Linear (obs.) Parameter value scaled by symmetrized uncertainty (c'/σ) $p_{SM} = 94.5\%$ Linear (exp.) The fit is performed with 19 free Best Fit 68 % CL ··· 95 % Cl parameters profiled simultaneously! No significant deviation from SM C200 0/1/ 0/1

CMS

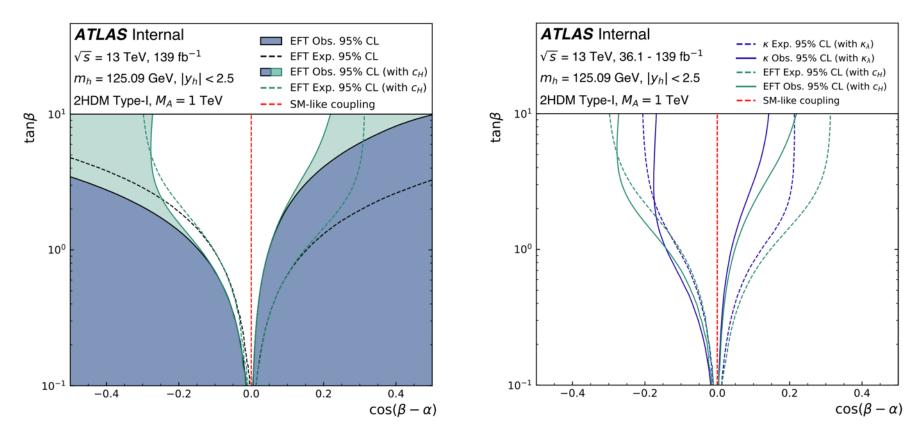
33

Summary and Outlook

- Rare Higgs boson processes offer fruitful ways to test the SM and search for BSM physics in a complementary way to the more *established* Higgs processes.
- Many results available with Run-2 dataset of ~140 fb⁻¹ at 13 TeV (not all could be shown)
 ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
 - o CMS: https://cms.cern/physics/cms-higgs-results
- In many cases, improved sensitivity leads to tighter constraints beyond simple luminosity scaling, thanks to advanced analysis techniques
- Possible BSM physics is being constrained in Effective Field Theory Interpretations using Higgs boson data from ATLAS and CMS
- Run 3 physics program has just started!

CMS/

- Much larger dataset will be available soon and beyond (HL-LHC)
- Rare Higgs processes promise to become even more interesting as the luminosity increases and observation comes within reach.
- New Physics could appear in the coming years...



Backup

Demonstrate applicability of constraints using 2HDM benchmark

