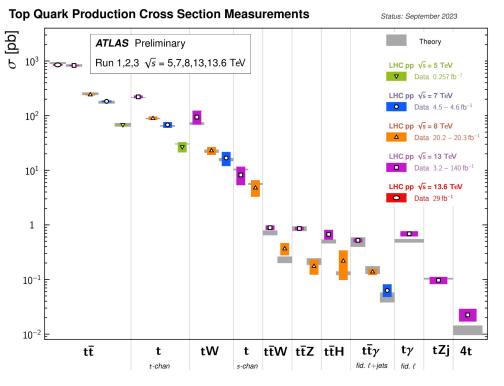
Top quark production, properties and rare processes Physics in Collisions 2023, 10-13.10.2023 Arica, Chile,

Michal Dubovský (Comenius University in Bratislava) on behalf of the ATLAS and CMS collaborations

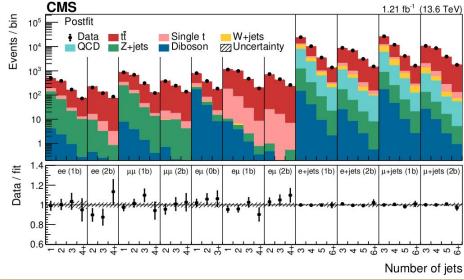

COMENIUS UNIVERSITY BRATISLAVA

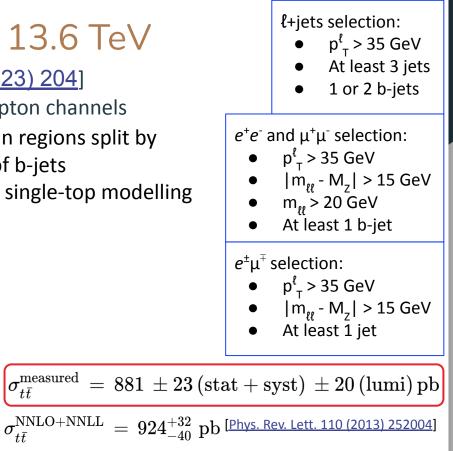
Top quark

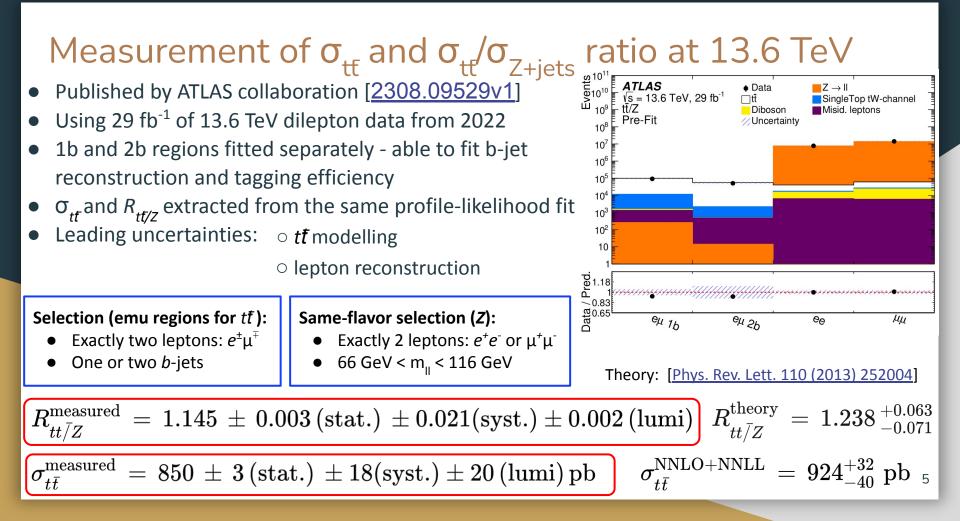
- It was discovered at Tevatron in 1995
- Mass of 173 GeV \rightarrow the heaviest elementary particle
- Decay width of 1.33 GeV → decays before hadronization → the only quark appearing as a pseudo-bare quark in experiments
- Excellent perturbative object produced at small distances with effective α_s = 0.1 good for precision QCD tests
- The top quark decays:
 - Leptonic (BR = 33 %)
 - Hadronic (BR = 67 %)

Top quark processes and their cross-sections

- The top quark production:
 - Pairs = tt
 - Single-top = tq, tW ...
 - Associated production with other particles (tX, ttX, 3 tops, 4 tops ...)
- Intensively studied by ATLAS and CMS experiments

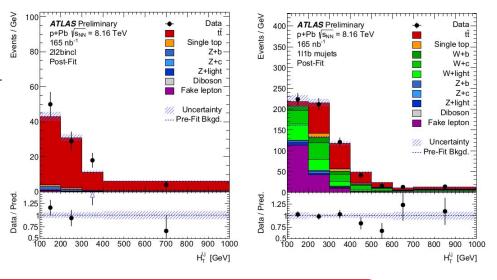

[ATL-PHYS-PUB-2023-028]


Inclusive tt cross-section at 13.6 TeV


- Published by CMS collaboration [JHEP 08 (2023) 204]
- Using 1.21 fb⁻¹ of 13.6 TeV data, ℓ +jets and dilepton channels
- Using profile-likelihood fit on N_{iets} distribution in regions split by lepton flavor, number of leptons and number of b-jets
- Leading uncertainties: lepton ID, b-tagging and single-top modelling

 $\sigma_{t\bar{t}}^{\rm measured}$

tĒ



Observation of tt in p+Pb collisions at 8.16 TeV

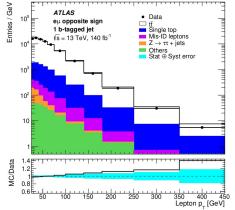
- Using 165 nb⁻¹ of p+Pb ATLAS data from 2016
- Dilepton and *l*+jets channels have been used
- Dominant backgrounds: fakes, W+jets, single-top and Z+jets
- Fitting H_{τ} in 6 analysis regions to get σ_{tf}
- **\ell+jets regions:** e+jets 1b, μ +jets 1b, e+jets \geq 2b, μ +jets \geq 2b
- **dilepton:** 1b and ≥2b
- Leading systematic uncertainties:
 - Jet energy scale
 - *tt* modelling
 - Fake leptons

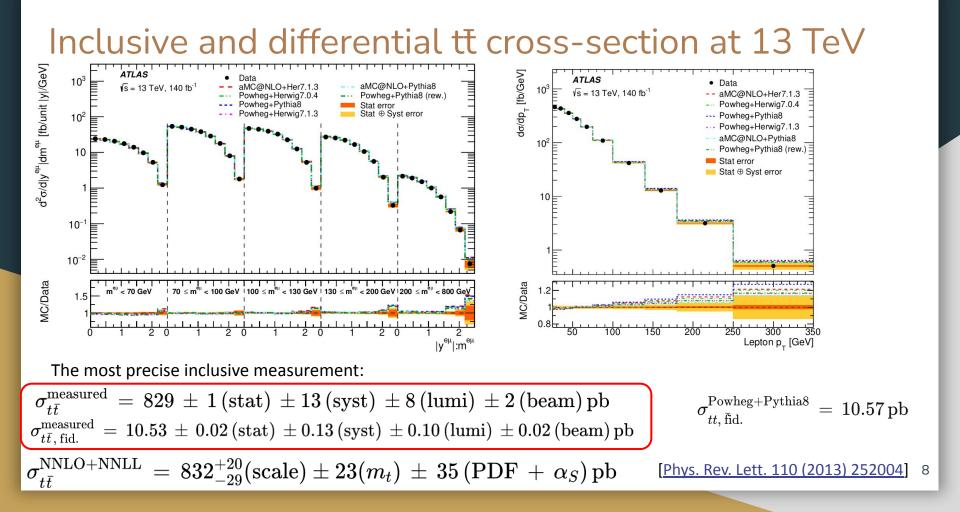
$\sigma_{t\bar{t}} = 57.9 \pm 2.0 \text{ (stat.)} ^{+4.9}_{-4.5} \text{ (syst.)} \text{ nb} = 57.9 ^{+5.3}_{-4.9} \text{ (tot.)} \text{ n}$

[ATLAS-CONF-2023-063]

Inclusive and differential tt cross-section at 13 TeV

- Published by ATLAS collaboration [JHEP07(2023)141]
- Measured in **dilepton** *e* μ **channel** in full Run 2 dataset
- Backgrounds relatively small: mostly single-top
- Luminosity uncertainty significantly reduced due to the new luminosity measurement: [2212.09379]
- Bin-by-bin unfolding is used to measure differential, fiducial and total x-sections (the last 2 have one true-level bin)
- Differential x-section measured in the following variables: $p_{\mathrm{T}}^{\ell}, \left|\eta^{\ell}\right|, m^{e\mu}, p_{\mathrm{T}}^{e\mu}, |\eta^{e\mu}|, E^{e} + E^{\mu}, p_{\mathrm{T}}^{e} + p_{\mathrm{T}}^{\mu} \text{ and } |\Delta \Phi^{e\mu}|$
- Four pairs used for double-differential:


 $(|y^{e\mu}|,\,m^{e\mu})\,;\,(|\Delta\Phi^{e\mu}|,\,m^{e\mu});\,ig(|\Delta\Phi^{e\mu}|,\,p_{
m T}^{e\mu}ig);\,(|\Delta\Phi^{e\mu}|,\,E^e+E^{\mu}\,)$


Selection:

- Single-lepton trigger
- One electron and one muon
- One or two b-tagged jets
- $e^{\pm}\mu^{\mp}$ in signal regions
- e[±]µ[±] for DD fakes estimate

Fiducial volume (particle-level):

- $p_{\tau}^{l} > 27$ (25) GeV for the leading (sub-leading) lep.
- |η^ℓ| < 2.5

Differential tt and tt+jets cross-section in ℓ +jets

ATLAS Preliminary

• Data pp \rightarrow tt ($\rightarrow \ell$ +jets) + 2jets POWHEG+PYTHIA8 POWHEG+HERWIG7 aMC@NLO+HERWIG7 SHERPA 2.2.12

√s = 13 TeV,140 fb⁻¹

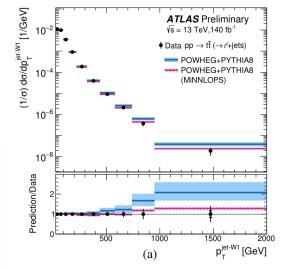
2000

(d)

3000

4000 m^{jet-rad1 - jet-rad2} [GeV]

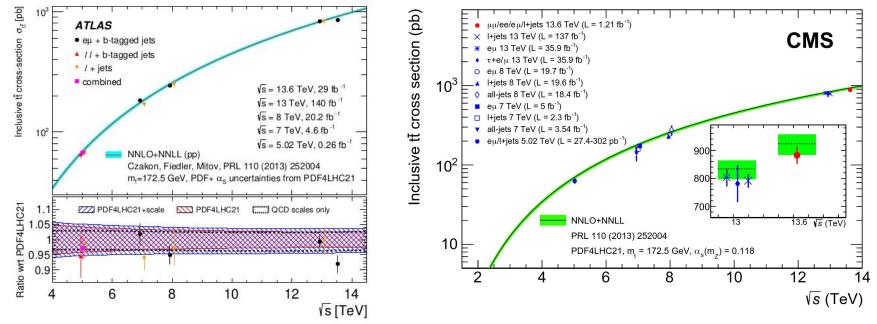
1000


- Using full Run 2 ATLAS dataset, {+jet channel [ATLAS-CONF-2023-068]
- Using events with 0, 1 or 2 additional jets, unfolding to particle level using Iterative Bayesian Unfolding

rad2 [pb/GeV]

10-

- First time using MiNNLOPS (better agreement with data)
- Measuring variables sensitive jet kinematics and topology:


			I - jet	10 ⁻³
<i>t t̄</i> inclusive	<i>tī</i> +1jet channel	$t\bar{t}$ +2jets channel	-rad	F
$p_{\rm T}^{\rm jet-W1}$	$p_{\rm T}^{\rm jet-rad1}$	$p_{\rm T}^{\rm jet-rad2}$	mjet	10 ⁻⁴
$ y^{\text{jet-W1}} $	$ y^{\text{jet-rad1}} $	$ y^{\text{jet-rad2}} $	dơ/dm ^{jet-rad1}	10 ⁻⁵
$p_{\mathrm{T}}^{\mathrm{jet-W2}}$	$ \Delta \phi^{ ext{toplep} - ext{jet-rad1}} $	$ \Delta y^{ ext{jet-rad1} - ext{jet-rad2}} $		10 ⁻⁶
$ y^{\text{jet-W2}} $	$ \Delta \phi^{ ext{tophad}- ext{jet-rad}1} $	$ \Delta \phi^{ ext{jet-rad1} - ext{jet-rad2}} $		10 ⁻⁷
$ \Delta y^{\text{jet-W1}-\text{jet-W2}} $	$ \Delta \phi^{ ext{jet-W1} - ext{jet-rad1}} $	$ \Delta \phi^{ ext{toplep} - ext{jet-rad2}} $	ļ	Prediction/Data
$ \Delta \phi^{\text{jet-W1}-\text{jet-W2}} $	$m^{t\bar{t} - jet-rad1}$	$ \Delta \phi^{\text{jet-W1} - \text{jet-rad2}} $:	
		m ^{jet-rad1 – jet-rad2}	(τ ₀ Ε

Leading systematic uncertainties:

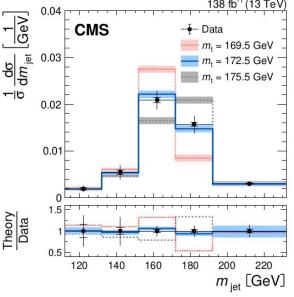
- b-tagging
- Background modelling
- Statistical uncertainty

tt cross-section measurements - overview

- Measured in *pp* collisions at energies ranging from 5 TeV to 13.6 TeV.
- Excellent agreement between the theory and experiment is observed!

Differential tt in m^{top} and the top-mass measurement

- Published by CMS collaboration [Eur. Phys. J. C 83 (2023) 560]
- Using *ℓ***+jets** *tt* events with boosted top in full Run 2 dataset
- Leading backgrounds (below 10%): single-top and W+jets
- Improvement in systematics wrt. previous measurement by measuring jet mass scale in hadronic W-decays and measuring distribution of N(subjets) to control FSR systematics
- Using TUnfold [<u>1205.6201</u>] algorithm (least squares method) with Tikhonov (second discrete derivative) regularization


Fiducial volume:

- One lepton, $p_{T}^{\ell} > 60 \text{ GeV}$
- $p_{T}^{\text{top-jet}} > 400 \text{ GeV}$, all subjets $p_{T} > 30 \text{ GeV} \& |n| < 2.5$
- $p_{T}^{2nd jet} > 10 \text{ GeV}$
- $\bullet \quad \hat{m}^{\mathrm{top-jet}} \ > \ m^{\ell \ + \ 2nd \ jet}$

Detector-level:

- Everything from fiducial
- At least one b-tag & $E_{T}^{miss} > 50 \text{ GeV}$
- Detector-level sideband region:
 - 350 GeV < $p_{T}^{\text{top-jet}}$ > 400 GeV
 - 55 GeV < $p_T^{\ell'}$ < 60 GeV

 $m_t \,=\, 173.06 \,\pm 0.24 \,({
m stat}) \,\pm 0.61 \,({
m exp}) \,\pm 0.47 \,({
m model}) \,\pm 0.23 \,({
m theo}) \,{
m GeV} \,=\, 173.06 \,\pm 0.84 \,{
m GeV}$

Top mass at 13 TeV in tt \rightarrow l +jets events

- By CMS with 2016 (36.3 fb⁻¹) *ℓ***+jets** data [2302.01967v1]
- Kinematic fit used to assign jets to parton and extract m_t.
 Three possible cases in simulation: correct, wrong, unmatched

Selection:

- Exactly one lepton
- At least 4 jets, exactly two of them b-tagged

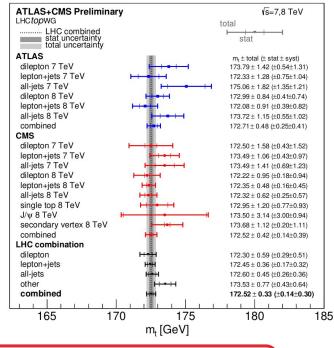
12

- χ^2 and P_{qof} from fit used to define two regions: $P_{qof} < 0.2$ and $P_{gof} > 0.2$
- 5 variables used in the 50<u>×1</u>0³ 36.3 fb⁻¹ (13 TeV) 36.3 fb⁻¹ (13 TeV) Single t Events / 5 GeV GeV tt correct Single t correct tt wrong tt wrong W+jets profile-likelihood fit to Z+jets tt unmatched Z+jets 40 - ℓ + jets tt unmatched /5 Data QĆD multijet -Data Uncertainty /// Uncertainty Diboson Diboson extract m₊ and constrain Events / 30 = 172.5 GeV 25 = 172.5 GeV > 0.2 systematics: 20 20 15 Set label Histogram 10 10 Observable Category 1D 2D 3D 4D5D $m_{t}^{\rm fit}$ $\label{eq:pgof_sol} \begin{array}{cccc} P_{\rm gof} > 0.2 & \times & \times & \times & \times \\ P_{\rm gof} > 0.2 & & \times & \times & \times \end{array}$ X Data/MC ata/MC 1.5 X $P_{\rm gof} > 0.2$ $m_{\rm W}^{\rm reco}$ $m_{\ell b}^{\rm reco}$ $P_{\rm gof} < 0.2$ X X × 0.5 \square 300 100 200 400 100 200 300 400 $m_{\ell b}^{\rm reco}/m_{\rm t}^{\rm fit}$ $P_{\rm gof} > 0.2$ X X m^{reco} [GeV] m^{fit} [GeV] $P_{\rm gof} > 0.2$ X

Top mass at 13 TeV in tt \rightarrow l +jets events

- Events split based on lepton flavor.
- Leading uncertainties:
 - Jet energy correction
 - Final state radiation modelling
 - Color reconnection modelling

$$m_{\rm t}^{5D} = 171.77 \pm 0.37 \,{\rm GeV}$$

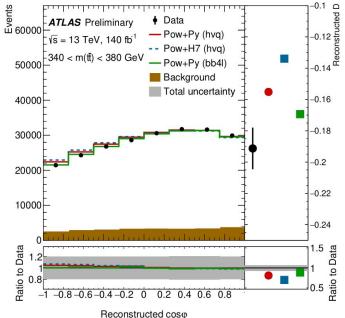

		36.310 (13 TeV)
CMS		
e + jets 1D μ + jets 1D ℓ + jets 1D	••	$\begin{array}{c} 172.25 \pm 0.72 \\ 172.02 \pm 0.61 \\ 172.13 \pm 0.62 \end{array}$
e + jets 2D μ + jets 2D ℓ + jets 2D		172.48 ± 0.62 172.03 ± 0.52 172.00 ± 0.52
e + jets 3D μ + jets 3D ℓ + jets 3D		$\begin{array}{c} 172.40 \pm 0.58 \\ 171.89 \pm 0.46 \\ 171.84 \pm 0.45 \end{array}$
e + jets 4D μ + jets 4D ℓ + jets 4D		172.03 ± 0.52 171.87 ± 0.43 171.72 ± 0.39
e + jets 5D μ + jets 5D ℓ + jets 5D		172.11 ± 0.49 171.98 ± 0.42 171.77 ± 0.37 (value ± tot. unc.)
170	172	174 <i>m</i> _t [GeV]

36.3 fb⁻¹ (13 TeV)

Top mass LHC combination (7 and 8 TeV)

- Combining ATLAS and CMS data from 7 and 8 TeV
- All three decay channels (all-hadronic, *l*+jets and dilepton) have been used
- BLUE method used to combine the measurements, $m_t = \sum_i w^i m_t^{i}$, optimal $w^i \rightarrow$ minimal uncertainty
- No statistical overlap between measurements
- 3 possibilities for systematic correlations: strong (ρ=0.85), partial (ρ=0.5), uncorrelated
- Leading systematic uncertainties:

Uncertainty impact [GeV]			
LHC A	ATLAS	CMS	
).18	0.17	0.25	
).09	0.16	0.03	
).08	0.13	0.14	
).08	0.18	0.06	
	.HC A).18).09).08	HC ATLAS 0.18 0.17 0.09 0.16 0.08 0.13	

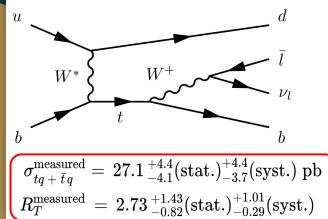

ATLAS-CONF-2023-066

 $m_{
m t} = 172.52 \pm 0.14 \,({
m stat}) \pm 0.30 \,({
m syst}) \,{
m GeV} = 172.52 \pm 0.33 \,{
m GeV}$

Quantum entanglement in tt production

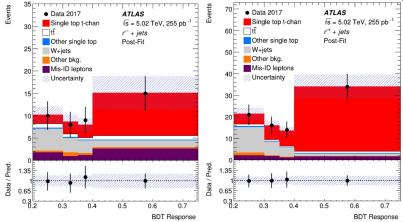
- Published by ATLAS with full Run 2 *eµ* data
- First *tt* entanglement observation [<u>CERNCOURIER</u>]
- Entangled particles = state of one cannot be described independently of the other
- Quantum entanglement in *tt* events → correlations between spin of the top-quarks → can be observed in angles between decay products
- φ = leptons are boosted to (anti-)top rest frame and the angle between them is calculated

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\varphi} = \frac{1}{2} \left(1 - D \,\cos\varphi \right) \qquad D = -3 \cdot \langle \cos\varphi \rangle = \mathrm{tr}[\mathbf{C}]/3$$


ATLAS-CONF-2023-069

 $D = -0.547 \pm 0.002$ (stat.) ± 0.021 (syst.) for $340 < m_{t\bar{t}} < 380$ GeV

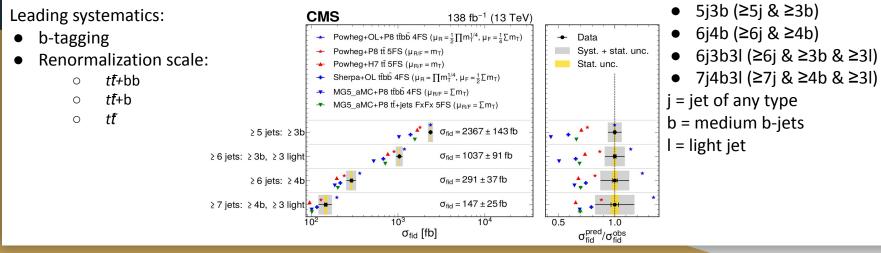
Dominant uncertainty: signal modelling


Single top t-channel cross-section measurement

- Using 255 pb⁻¹ of 5.02 TeV pp ATLAS data [2310.01518]
- Cross-section sensitive to V_{tb}
- BDT trained to separate signal from backgrounds (mostly W+jets and fake leptons)
- Extracting σ(tq+tq) and R_t = σ(tq)/σ(tq) from profile likelihood fit of the BDT output distribution in 2 regions split by lepton charge: ℓ⁻+jets and ℓ⁺+jets

Dominant syst. uncertainties:

- MC stat. uncertainty
- Signal modelling:
 Matrix element
- Parton showering
- Fake lepton modelling


Selection:

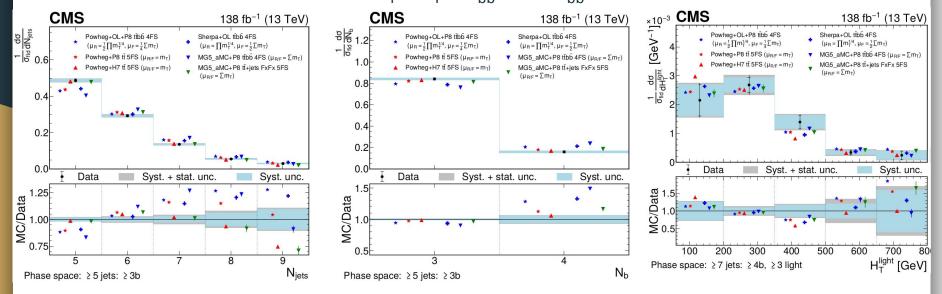
- Exactly one lepton (electron or muon)
- Exactly 2 jets, exactly 1 of them b-tagged
- 1.5 < $|\eta^{\text{ligth-jet}}|$ < 4.0 & $|\eta^{\text{ligth-jet}} \eta^{\text{b-jet}}|$ > 1.5
- $m_T^W > 35 \text{ GeV } \& E_T^{miss} > 15 \text{ GeV}$

- m(*l*,b-jet) < 165 GeV & M^W < 102 GeV
- 140 GeV < m^{top} < 225 GeV

Inclusive and differential cross section of ttbb by CMS

- Published by CMS with full Run 2 *ℓ***+jets** data [2309.14442]
- Leading backgrounds: *tf+cc, tf+light*
- Inclusive x-section: profile-likelihood fit on the region-specific variable: $|\eta(b_3)|$ in 5j3b, H_T^{light} in 6j3b3l, $|\eta(b_2^{\text{extra}})|$ in 6j4b and $|\Delta \phi(lj_1^{\text{extra}}, b_{\text{soft}})|$ in 7j4b3l

Selection (SR):

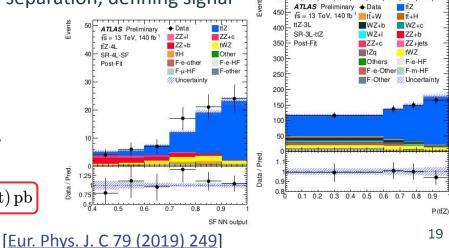

- Exactly one lepton
- At least 5 jets
- $\sum p_{T}^{jet} > 150 \text{ GeV}$
- At least 3 medium (75-80% WP) b-tags

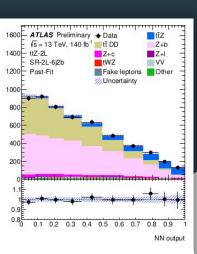
Split into 4 (overlapping) signal regions (detector and particle):

17

Inclusive and differential cross section of ttbb by CMS

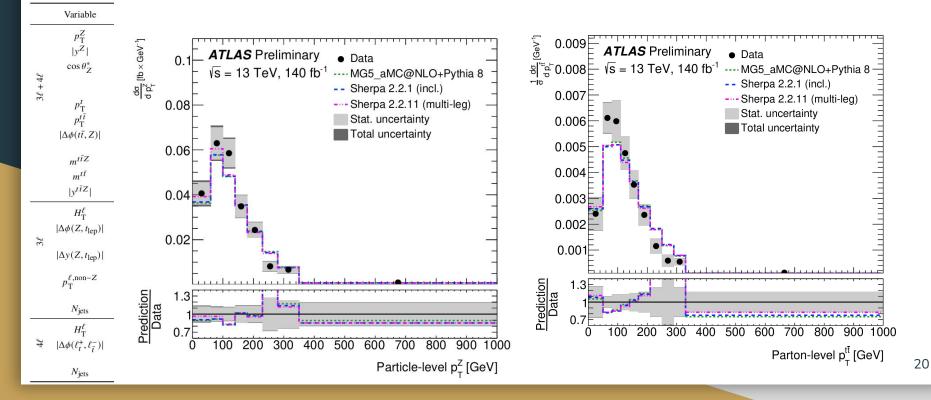
- Unfolding to particle-level using maximum likelihood unfolding
- Differential cross-section measured in 29 observables, such as number of jets, b-jets, kinematics of the b-jets, H^b_T, H^j_T, m^{max}_{bb}, ΔR^{avg}_{bb}...

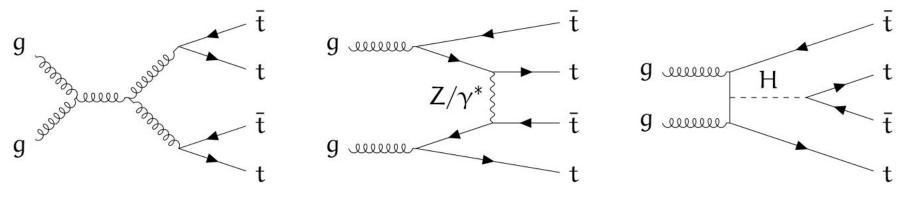



Differential and inclusive ttZ measurement

- Refined measurement with full Run 2 data by ATLAS [ATLAS-CONF-2023-065]
- Using profile-likelihood fit in 2*l*, 3*l* and 4*l* channels for inclusive measurement
- Profile-likelihood unfolding in 3ℓ and 4ℓ for differential measurement
- Spin correlations observed with 1.8σ significance.
- EFT interpretation + spin correlations measurement
- Using DNN in all channels for signal vs. background separation, defining signal regions based on its output + Data Preliminary ttZ
- Three regions per channel, fitting DNN output distribution in most of the regions (using yields and b-tagging working point in some regions)
- Leading uncertainties: background normalizations, lepton and jet related uncertainties

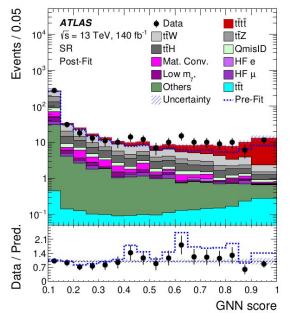
 $t\bar{t}Z$


 $\sigma^{\rm measured}_{t\bar{t}\,Z}$ $= 0.86 \pm 0.06 \,\mathrm{pb} = 0.086 \pm 0.04 \,\mathrm{(stat)} \pm 0.04 \,\mathrm{(syst)} \,\mathrm{pb}$


Differential and inclusive ttZ measurement

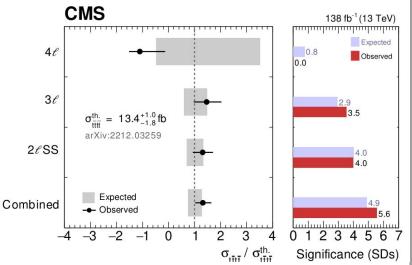
• Unfolding 9 variables in 3*l*+4*l* combination, 5 in 3*l* and 3 in 4*l*.

Four tops production


- Recently observed by both ATLAS [EPJC 83 (2023) 496] and CMS [2305.13439v1]
- Cross-section sensitive to top-quark Yukawa coupling, can be modified by BSM physics such as gluino pair production, heavy scalar boson + top production etc.
- Rare process in SM: $\sigma_{t\bar{t}t\bar{t}}^{\text{NLO}(\text{QCD}+\text{EW})+\text{NLL}'} = 13.37(2)^{+1.04}_{-1.78} \text{ fb}$ at 13 TeV [2212.03259]
- Leading background processes: *tTW* and fake leptons
- Up to 4 leptons seen in detector

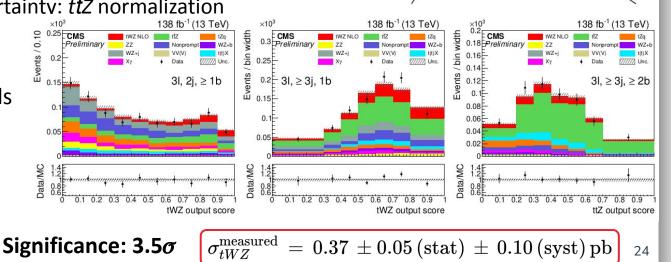
Four tops observation at 13 TeV by ATLAS

- Using 2^l SS, 3^l and 4^l channels with the full Run 2 dataset
- Graph Neural Network used to separate signal from backgrounds (mostly *tt*+*X*)
- Profile likelihood fit is used to extract σ_{tft} from distributions of GNN discriminant
- Normalizations of 4 fake-lepton background components, ttW⁺ and ttW⁻ are free floating and fitted simultaneously with the signal cross section
- Leading systematic uncertainties:
 - *tftf* modelling (matrix element and parton showering)
 - *b*-tagging and jet-related uncertainties
 - \circ *ttH* modelling and *ttW* modelling
- 6.1*\significance* wrt. null hypothesis


$$\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3}$$
(stat) $^{+4.6}_{-3.4}$ (syst) fb = 22.5 $^{+6.6}_{-5.5}$ fb

22

Four tops observation at 13 TeV by CMS


- Using 2{ SS, 3{ and 4{ channels with the full Run 2 dataset
- BDT used to separate signal from backgrounds (mostly tf+X)
- Using profile likelihood fit: free floating signal strength, ttW and ttZ normalizations
- Fitting BDT output in signal regions. In control regions fitting N_{iets} and sum of lepton charges
- Leading systematic uncertainties:
 - *tftf* modelling (matrix element and parton showering)
 - DEEPJET correction factors and JES
 - Additional b-jets and jets modelling in $t\bar{t}W$
- **5.6***\sigma* significance wrt. null hypothesis

$$\sigma(t\bar{t}t\bar{t}) = 17.7^{+3.7}_{-3.5}$$
 (stat) $^{+2.3}_{-1.9}$ (syst) fb = 17.7 $^{+4.4}_{-4.0}$ fb

Evidence of tWZ production at 13 TeV by CMS

- Using full Run II data [CMS-TOP-22-008]
- Targeting decays $W \rightarrow \ell v$, $Z \rightarrow \ell \ell$, t \rightarrow anything (3 or 4 leptons)
- 5 SRs: 3 low p_T: SR_{3I,3j}, SR_{3I,2j} and SR_{4I} and 2 boosted: SR_{had} SR_{lep} Boosted
- DNN used to suppress (mostly *ttZ*) background in low-p_T SRs
- Leading systematic uncertainty: ttZ normalization
- Profile-likelihood fit of DNN output (low-p_T regions) and event yields (boosted regions)

 W_{-}

W-

b

Conclusions

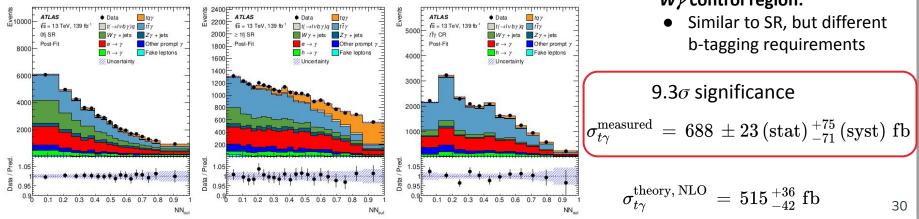
- A lot of top-related measurements were published during the last year by both ATLAS and CMS collaborations
- The *tf* production cross section has been already measured at 13.6 TeV by both ATLAS and CMS. Good agreement with the theory is seen
- **Multiple differential and inclusive** *t***t** cross-section measurements have been published
- Production of the 4 top-quarks (very rare SM process) has been observed by both ATLAS and CMS
- Multiple measurements of the top quark produced with other particles (top +X, X=vector boson or $b\bar{b}$ pair) have been performed.
- Multiple measurements of the **top-quark mass** have been presented
- Single-top production was observed at 5.02 TeV
- **Quantum entanglement** in *tt* production was observed at 13 TeV

Back-up slides

Top quark related measurements in the last year

Title	Link	Collab.
First measurement of the top quark pair production cross section in proton-proton collisions at \sqrt{s} = 13.6 TeV	HEP 08 (2023) 204	CMS
Measurement of the top quark mass using a profile likelihood approach with the lepton+jets final states in proton-proton collisions at \sqrt{s} = 13 TeV	<u>2302.01967v1</u>	CMS
Measurement of the differential tt production cross section as a function of the jet mass and extraction of the top quark mass in hadronic decays of boosted top quarks	<u>Eur. Phys. J. C 83</u> (2023) 560	CMS
Inclusive and differential cross section measurements of ttbb production in the lepton+jets channel at \sqrt{s} = 13 TeV with the CMS detector	2309.14442	CMS
Evidence for tWZ production in proton-proton collisions at \sqrt{s} = 13 TeV in multilepton final states	CMS-TOP-22-008	CMS
Observation of four top quark production in proton-proton collisions at \sqrt{s} = 13 TeV	<u>2305.13439v1</u>	CMS

Top quark related measurements in the last year


Title	Link	Collab.
Observation of four-top-quark production in the multilepton final state with the ATLAS detector	EPJC 83 (2023) 496	ATLAS
Measurement of the inclusive tt production cross section in the lepton+jets channel in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector using support vector machines	Phys. Rev. D 108 (2023) 032014	ATLAS
Measurement of the charge asymmetry in top-quark pair production in association with a photon with the ATLAS experiment	Phys. Lett. B 843 (2023) 137848	ATLAS
Observation of single-top-quark production in association with a photon using the ATLAS detector	<u>2302.01283v1</u>	ATLAS
Inclusive and differential cross-sections for dilepton tt production measured in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector	<u>JHEP07(2023)141</u>	ATLAS
Measurement of the tt cross section and its ratio to the Z production cross section using pp collisions at \sqrt{s} = 13.6 TeV with the ATLAS detector	<u>2308.09529v1</u>	ATLAS
Measurement of the total and differential cross-sections of <i>ttW</i> production in <i>pp</i> collisions at 13 TeV with the ATLAS detector	ATLAS-CONF-2023-019	ATLAS
Search for leptonic charge asymmetry in <i>ttW</i> production in final states with three leptons at \sqrt{s} =13 TeV	<u>JHEP 07 (2023) 033</u>	ATLAS
Measurement of jet substructure in boosted <i>tf</i> events with the ATLAS detector using 140 fb ⁻¹ of 13 TeV <i>pp</i> collisions	ATLAS-CONF-2023-027	ATLAS
Measurement of t-channel single-top-quark production in pp collisions at \sqrt{s} =5.02 TeV with the ATLAS detector	<u>2310.01518</u>	ATLAS

Another very recent (last month) top-quark related results

Title	Link	Collab.
Combination of measurements of the top quark mass from data collected by the ATLAS and CMS experiments at \sqrt{s} = 7 and 8 TeV	ATLAS-CONF-2023-066	ATLAS+CMS
Observation of quantum entanglement in top-quark pair production using pp collisions of \sqrt{s} = 13 TeV with the ATLAS detector	ATLAS-CONF-2023-069	ATLAS
Measurement of differential cross sections in <i>tt</i> and <i>tt</i> +jets production in the lepton+jets decay mode in pp collisions at $\sqrt{s} = 13$ TeV using 140 fb ⁻¹ of ATLAS data	ATLAS-CONF-2023-068	ATLAS
Observation of <i>tt</i> production in lepton+jets and dilepton channels in p+Pb collisions at \sqrt{s} NN = 8.16 TeV with the ATLAS detector	ATLAS-CONF-2023-063	ATLAS
Inclusive and differential cross section measurements of ttZ production in $pp \sqrt{s} = 13$ TeV with the ATLAS detector, including EFT and spin correlations	ATLAS-CONF-2023-0 65	ATLAS

Observation of tqy by ATLAS

- Published by ATLAS with full Run II data [2302.01283v1]
- Only radiative photon production considered as the signal
- Leading backgrounds: $t\bar{t}\gamma$ and $W\gamma$
- Two NNs trained (one in =0 fj SR, one in ≥ 1 fj SR) to separate signal from background
- NN output used in profile-likelihood fit, with free floating $t\bar{t}\gamma$ and W γ normalizations

Selection (SR):

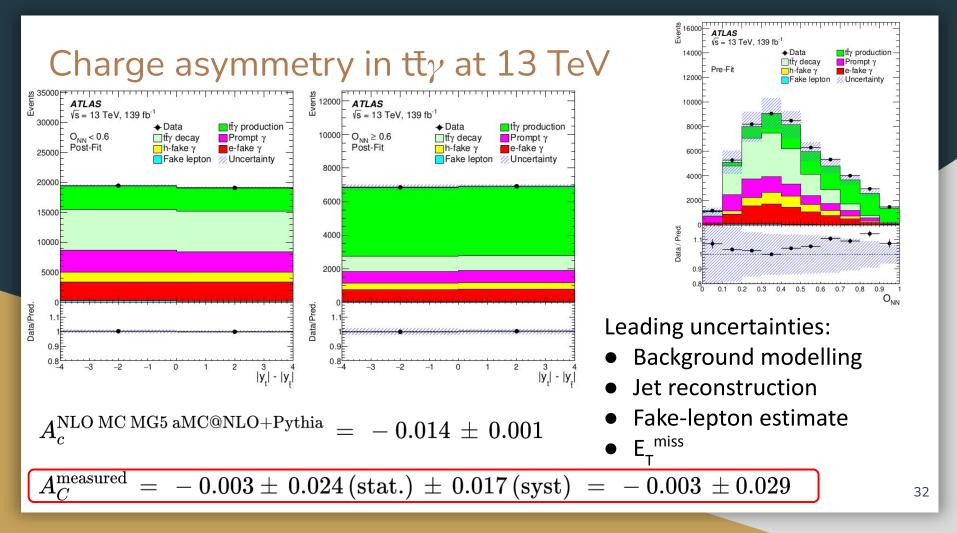
- Exactly one lepton
- Exactly one tight b-jet, no additional loose b-jet
- At least one photon
- $E_{-}^{miss} > 30 \text{ GeV}$ 2 signal regions:
 - No forward jet (fj)
 - ≥1 forward jet

$t\bar{t}\gamma$ control region:

Additional b-jet

$W\gamma$ control region:

Charge asymmetry in tt_{γ} at 13 TeV


- Published by ATLAS with full Run II data [Phys. Lett. B 843 (2023) 137848]
- Larger qq/gg fraction compared to *tt* -> higher asymmetry
- Due to QED ISR and FSR interference, top-quarks are produced more likely in the original anti-quark direction resulting in:
 - Forward-backward asymmetry in $p\bar{p}$ collisions
 - Central-forward asymmetry in *pp* collisions

$$A_{\rm C} = \frac{N(|y_t| > |y_{\bar{t}}|) - N(|y_t| < |y_{\bar{t}}|)}{N(|y_t| > |y_{\bar{t}}|) + N(|y_t| < |y_{\bar{t}}|)}$$

Selection:

- Exactly one lepton
- Exactly one photon
- At least 4 jets, at least one of them b-tagged
- $\Delta R(\ell,\gamma) > 0.4$
- $|M_{\ell\gamma}-M_{Z}| > 5 \text{ GeV} (\text{for electrons})$ Fiducial:
- Exactly one lepton
- Exactly one prompt photon
- At least 4 jets, at least one of them b-jet

- Asymmetry measured via profile-likelihood unfolding, 2 bins at truth-level
- NN trained to identify $t\bar{t}\gamma$ signal 2 regions defined: $O_{NN} > 0.6$ and $O_{NN} < 0.6$
- Only radiative photon production considered as signal
- Leading backgrounds: radiative *tt* decay, photon fakes

