Properties of the Standard Model Higgs Boson

Kajari Mazumdar, TIFR, Mumbai, India.

on behalf of ATLAS and CMS Collaborations, CERN-LHC

Physics in Collision, Arica, Chile

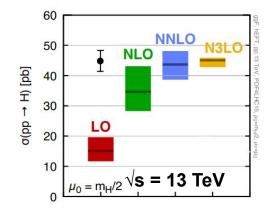
10-14 October, 2023

Apologies for remote participation

More than a decade after the discovery

• The Higgs field, with a non-zero vacuum expectation value, permeates the whole universe and is responsible for the generation of masses of the standard model (SM) particles in a consistent way after the electroweak symmetry breaking.

 \rightarrow the simplest and elegant idea about the origin of mass: postulated in 1960s, confirmed experimentally in 2012! \rightarrow all the mass values are to be determined experimentally, though the nature of the interaction is specified in the theory.


- Discovery of a fundamental scalar resonance for the first time by ATLAS and CMS experiments at the CERN-LHC.
- Though the discovery completed the SM description of the particle content, there are many questions in high energy physics that are still unanswered.
 → we need a theory beyond standard model (BSM).

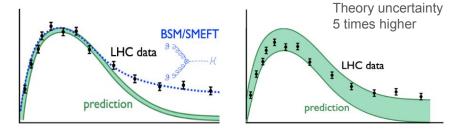
- Mandate after the discovery: we must check if this new particle belongs to SM or BSM.
- Essentially, we study the dynamics of production and decay to understand the properties of the Higgs boson (H) in detail
 - determine the quantum numbers: charge, spin, parity, mass and width
 - check if all the predicted decay channels exist or not
 - look for indications for anomalous couplings
 - estimate the shape of the Higgs potential: constrain the trilinear and quartic couplings
 - study if the Higgs sector is minimal or if there is an extended one (in SM it is a complex doublet leading to a single scalar)
 - investigate if the Yukawa interaction conserves lepton flavor or not

Higgs physics continues to be exciting and remains a very active field of research.

Dividend of collective efforts: achieve more than anticipated!

- excellent performance of the LHC machine during its first decade of operation.
- enormous progress in computing capabilities.
- precision theoretical description of the production and decay processes of the Higgs boson as well as the relevant backgrounds.
- extensive understanding of the performance of the experiments.
- judicious application of sophisticated machine learning techniques!
 eg. b-jet identification: Deep Jet in CMS: <u>JINST 15 (2020) P12012</u>, <u>CMS-DP-2021-014</u>
- ⇒ Higgs physics entered precision era quickly
- ⇒ increased sensitivity to search for BSM physics by looking for deviations from SM

Prediction for Higgs boson production cross section


 σ_{ggF} (theory) = 48.68 ± 3.9 (scales) ± 1.9 (PDF) ± 2.6(α_{s}) pb

- higher order quantum corrections in perturbative calc.
 i) upto next-to-next-to-next-to leading order (N3LO) of QCD coupling (α_s)
 ii) Electroweak corrections
 - + finite quark mass effects
- PDF uncertainty: ~ 2-3%
- Uncertainty due to $\alpha_s : \sim 2\%$

This talk: glimpses on a limited selection from a plethora of very interesting analyses carried out in recent times.

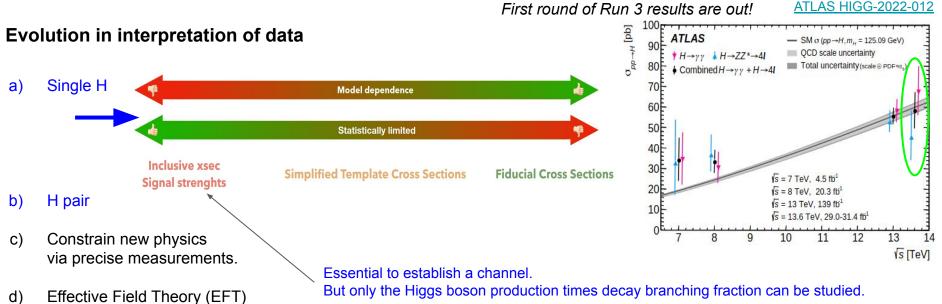
Complementary results on rare decays and BSM searches: Talk by Bernd Stelzer.

We cannot afford to miss a discovery!

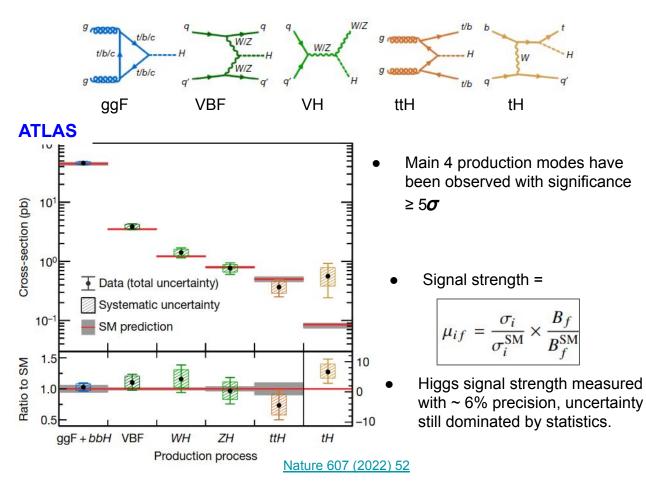
Data

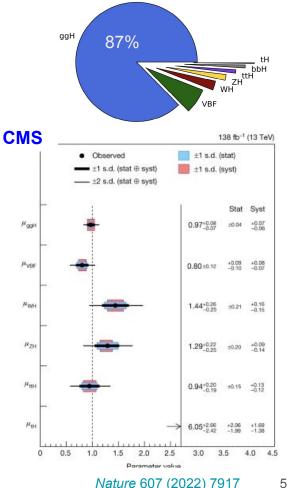
pp collision data collected by each of ATLAS and CMS experiments: Run-1 at \sqrt{s} = 7, 8 TeV (2010 - 2012) : ~20 fb⁻¹

Run-2 at \sqrt{s} = 13 TeV (2015 - 2018): ~140 fb⁻¹

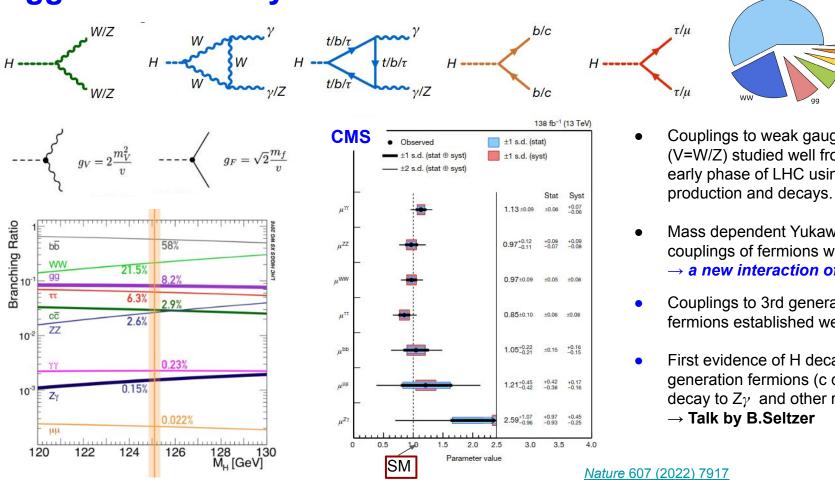

Run-3 at \sqrt{s} = 13.6 TeV (2022): ~ 31.3 fb⁻¹

interpretation via global fits.


 \Rightarrow Total no. of Higgs bosons produced at each interaction point ~10⁷

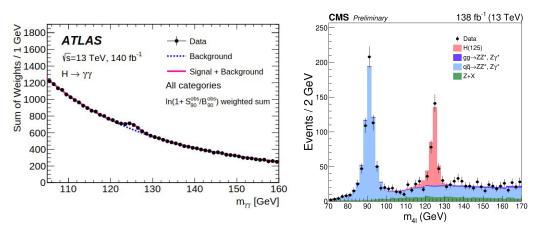

Value of the Higgs boson mass chosen by Nature
 → quick discovery at the LHC.

 \rightarrow numerous experimental measurements using the main production processes with multiple decay modes can be scrutinised.


Higgs production at the LHC

5

Higgs boson decays



μμ ZZ γγ Zγ^{SS} τ/μ Couplings to weak gauge bosons (V=W/Z) studied well from the early phase of LHC using H

- Mass dependent Yukawa couplings of fermions with H \rightarrow a new interaction of Nature
- Couplings to 3rd generation fermions established well.
- First evidence of H decays to 2nd generation fermions (c quark, μ) + decay to Z_{γ} and other rare modes \rightarrow Talk by B.Seltzer

Higgs boson mass

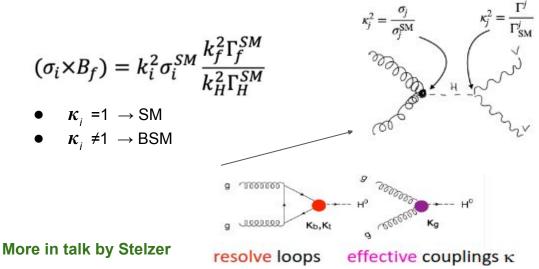
- A free parameter in SM.
- Important ingredient for predictions of SM eg.,couplings → production and decay rates of Higgs.
- Mass is best measured in high resolution (~1%) channels: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$.
- Br.(H $\rightarrow \gamma\gamma$) ~ 0.23% , narrow mass peak over smooth background.
- Br.(H→ZZ*→4ℓ) ~ 1.2 * 10⁻⁴ high S/B ratio, clean & narrow mass peak.
- Recently multiple improvements in both channels by each experiment due to better understanding of detector performances, improved calibrations, reconstruction methods & analysis strategies.
 Eg., syst. uncert. for ATLAS measurement of H → yy channel has improved by X3.
- Combination of Run1 + Run2 results still statistically limited.

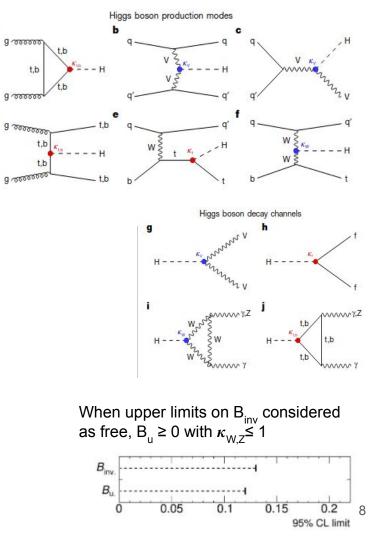
CMS Run 2: $H \rightarrow 4\ell$: 125.04 ± 0.12 (stat.) ± 0.05 (syst.) GeV Best single channel measurement Combined Run 1 + Run 2 ($4\ell + \gamma\gamma$):

125.11 ± 0.11 GeV (stat.: ± 0.09)

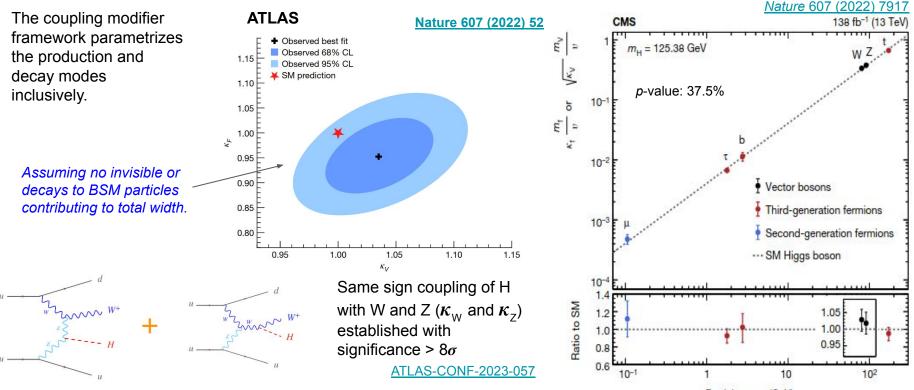
CMS PAS-HIG-21-019

ATLAS


```
Run 2: H \rightarrow \gamma \gamma : 125.17 V 0.11 (stat.) ± 0.09 (syst.) GeV
Combined Run 1 + Run 2 (4\ell + \gamma \gamma):
125.11 ± 0.11 (stat.: ± 0.09) GeV
```

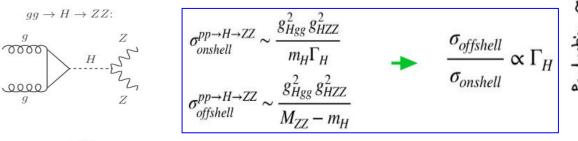

Best to-date precision of m_µ: 0.09%

arXiv 2308.07216, 2308.04775

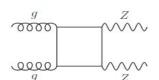

Anomalous couplings

- Current precision in measurements allows for anomalous couplings.
- Describe possible deviations from SM with the scale factors κ_i \rightarrow the cross section or the partial decay width scales with κ_i^2 when compared to the SM prediction.
- Assume event kinematics to be unaltered.
- κ- framework can accommodate any non-SM invisible or undetected component.

Reduced coupling modifiers to bosons and fermions



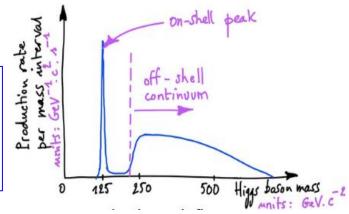
Particle mass (GeV)


Data follows the pattern expected in SM.

Decay width of the Higgs boson

- $\tau_{\rm H} \approx 1.6 \times 10^{-22} \text{ sec} \Rightarrow$ the natural width, $\Gamma_{\rm H} = 4.14 \pm 0.02 \text{ MeV}$ in SM.
- $\Gamma_{\rm H}$ can be estimated by comparing on-shell and off-shell productions of H assuming SM couplings and no new signal, other than possible enhancement of off-shell H contribution .

 $gg \rightarrow ZZ$:


- Negative interference of diagrams involving H and the gg \rightarrow ZZ continuum.
 - 15% of Higgs production x-sec. in HZZ is for large off-shell masses.

CMS: $\Gamma_{\rm H} = 2.9^{+2.3}_{-1.7}$ MeV ATLAS: $\Gamma_{\rm H} = 4.5^{+3.3}_{-2.5}$ MeV

CMS PAS-HIG-21-019

arXiv:2304.01532

Higgs width can be measured directly using the on-shell width or lifetime. But experimental resolution: ~ 1 GeV

Off-shell production of Higgs established with a confidence of 3.6 σ

Assume constant coupling in the range

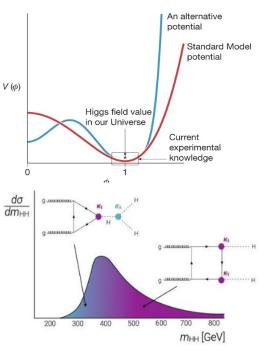
Extracted value of H width consistent with SM.

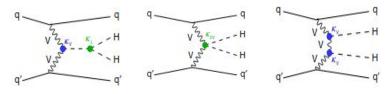
Self-coupling of the Higgs boson

Before the electroweak symmetry breaking, Higgs potential:

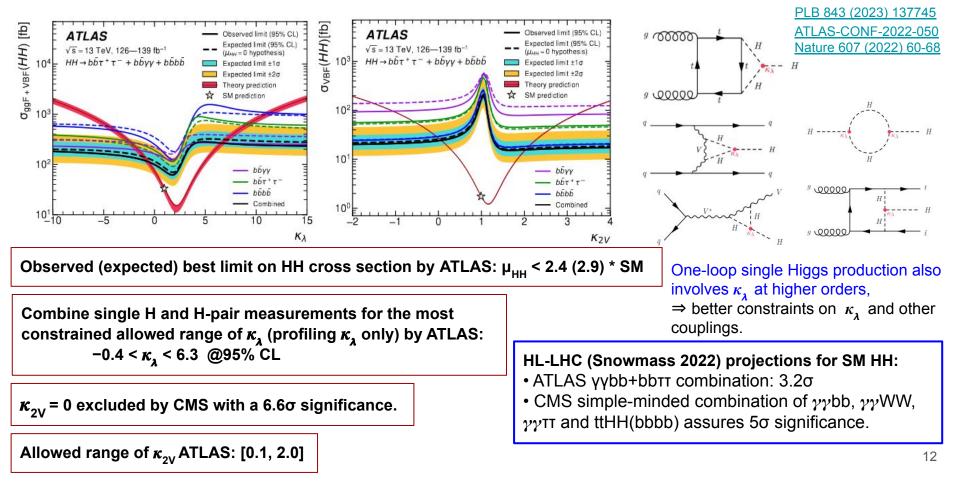
$$V(\phi) = \mu^2 |\phi|^2 + \lambda |\phi|^4$$

$$\phi = \nu + b$$

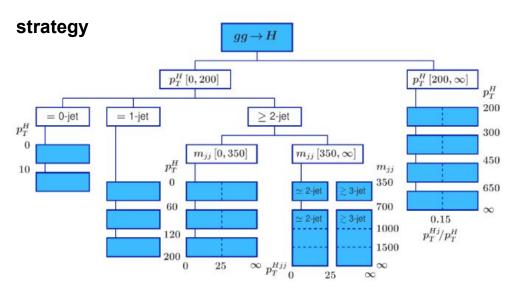

After EWSB: $V(h) \simeq \frac{1}{2}m_H^2h^2 + \lambda vh^3 + \frac{1}{4}\lambda h^4 + \dots$

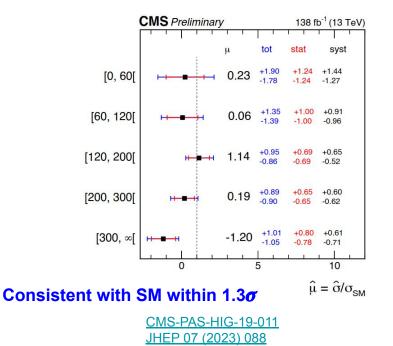

- Determination of Higgs self-coupling λ:
 → Currently THE most important mandate to understand the nature or shape of the Higgs potential near the minimum
 → related to the evolution of the universe at the EW scale.
- Inclusive Higgs pair production at the LHC $\to\,$ direct access to HHH and VVHH vertices $\to\,\kappa_{\lambda}^{},\,\kappa_{_{2V}}^{}$

 $\sigma(pp \rightarrow HH+X) \sim 31$ fb almost 10^3 times smaller than $\sigma(pp \rightarrow H+X)$


- Target both ggF and VBF processes:
- Interference among relevant diagrams

 $\rightarrow \mbox{cross}$ section dependency on the coupling modifiers



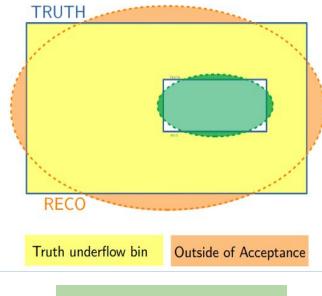

Limits on trilinear self-coupling and quartic couplings

Simplified template cross section: STXS

- Cross sections for each production mode with specific final states, in bins of kinematic variables (eg. p_T^H, N_{jets}, m_{jj}) in exclusive regions of phase space. Specific bins have increased sensitivity to BSM.
- Granular measurement of the cross section for each production mode \rightarrow allows kinematics-dependent interpretations.
- Provide a common set of definitions for the combination of the measurements \rightarrow inclusive over the Higgs decays

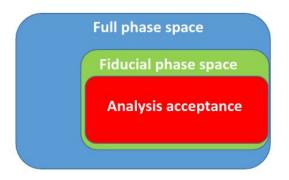
Analyses presently most sensitive to ggH.

The fiducial cross section


- Fiducial cross section: the phase space of interest aligned with detector configuration ⇒ no need for correction for kinematic selections on reconstruction level objects and analysis acceptance.
- Fiducial phase space of the decay defined at the generator level is not exactly the same as that in the reconstruction level.

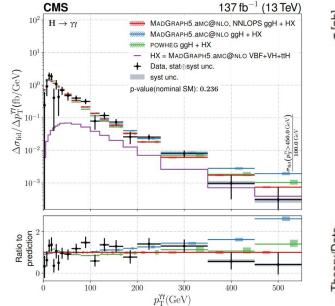
 \rightarrow detector effects unfolded for the fiducial phase space defined at the generator level.

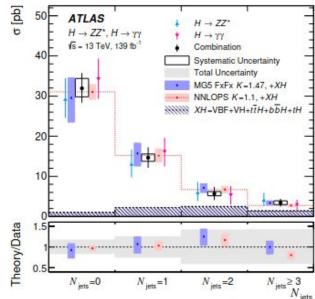
- Outside of acceptance (OOA) component part subtracted from signal before detector unfolding.
- Special phase space defined as a subset eg. require additional 2 jets in the event. → target VBF process requiring special topology of the 2 jets.


Differential cross section:

- \rightarrow more information than inclusive cross sections
- \rightarrow more powerful to validate or falsify models

Dedicated, special phase space


Fiducial cross section in dedicated regions of phase space



Shape of $p_{\tau}^{\gamma\gamma}$ spectrum:

i) low p_{T} region sensitive to light quark Yukawa couplings.

ii) high p_{T} region sensitive to effective coupling to gluon.

No sensitivity of p_{τ} to HVV couplings in SM.

CMS (H
$$\rightarrow \gamma\gamma$$
) $\sigma_{\text{fid}} = 73.4^{+5.4}_{-5.3} (\text{stat})^{+2.4}_{-2.2} (\text{syst}) \text{ fb} = 73.4^{+6.1}_{-5.9} \text{ fb}$
SM prediction: 75.4 ± 4.1 fb

JHEP 05 (2023) 058 JHEP 03 (2023) 091

CP properties of the Higgs boson & effective field theory

- Higgs boson in SM is CP even: J ^{CP} = 0⁺⁺
- CP-odd H complements other known sources \rightarrow indication of BSM physics.
- Pure CP-odd Higgs excluded at > 99% CL by Run 1 data
- However, strong theoretical motivation to search for CP-violating effects in the couplings of Higgs with fermions
- Search for CPV in the shapes of various optimal observables (rate measurement is not sensitive to CPV)
- Fermionic couplings (Hff) modelled as : $\mathscr{L}_{ffH} = \kappa'_f y_f \phi \bar{\psi}_f (\cos \alpha + i\gamma_5 \sin \alpha) \psi_f$ \rightarrow tree-level effect prominent in 3rd generation \rightarrow ttH production, H $\rightarrow \tau\tau$ decay processes.
- Bosonic couplings (HVV): higher order operators suppressed by BSM scale Λ : → pure CPV effects in interference term

$$\mathscr{L}_{VVH} = \mathscr{L}_{SM} + \frac{c_i}{\Lambda^2} \phi \tilde{V}_{\mu\nu} V^{\mu\nu} + \dots$$

• Effective Field Theory allows us to look for "low energy" deviations of "high energy" BSM physics.

$$A(HVV) \sim \begin{bmatrix} \alpha_{1}^{VV} + \frac{\kappa_{1}^{VV}q_{1}^{2} + \kappa_{2}^{VV}q_{2}^{2}}{(\Lambda_{1}^{VV})^{2}} \end{bmatrix} m_{V1}^{2} \epsilon_{V1}^{*} \epsilon_{V2}^{*} + \frac{a_{2}^{VV}}{a_{2}^{2}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + \frac{a_{3}^{VV}}{a_{3}^{2}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu} + \frac{a_{3}^{VV}}{cP} f_{\mu\nu}^{*(1)} \tilde{f}^$$

CP violation in HVV coupling using $H \rightarrow \pmb{\tau \tau}$

Effectively, estimate constraints on the fractional contribution of the anomalous couplings to the Higgs boson cross sections

• Effective cross sections measured in terms of ratios like

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + |\kappa_1|^2 \sigma_{\Lambda 1} + |\kappa_1^{Z\gamma}|^2 \sigma_{\Lambda 1}^{Z\gamma}} \operatorname{sgn}\left(\frac{a_i}{a_1}\right)$$

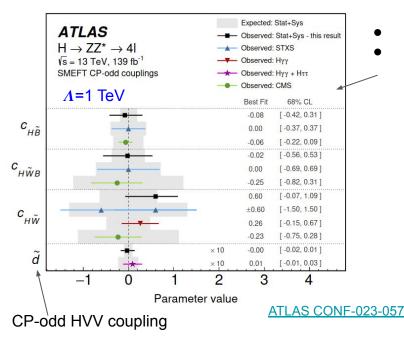
PRD 28 (2023) 032013 JHEP 06 (2022) 012

Matrix element calculations \rightarrow discriminating variables

$$\mathcal{D}_{\mathrm{BSM}} = rac{\mathcal{P}_{\mathrm{SM}}(ec{\Omega})}{\mathcal{P}_{\mathrm{SM}}(ec{\Omega}) + \mathcal{P}_{\mathrm{BSM}}(ec{\Omega})}$$

$$\mathbf{\Omega}^{\text{assoc}} = \{\theta_1^{\text{VBF}}, \theta_2^{\text{VBF}}, \theta^{\text{*VBF}}, \Phi^{\text{VBF}}, \Phi_1^{\text{VBF}}, q_1^{2,\text{VBF}}, q_2^{2,\text{VBF}}\}$$

CMS CMS 138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) 16 -_ Events / Bin 2 d ln $\tau\tau + 4I + \gamma\gamma$ 10 **VBF** Category SM H (125)x50 14 - Observed H MM H (125)x50 ····· Expected 10 ττ bkg 12 jet→τ, mis-ID Other 104 10 Uncertainty 10³ 6 95% CL Obs. / Exp. -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 -0.50.5 f^{Htt} DCP

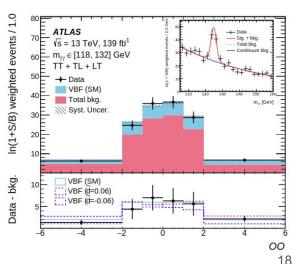

Combination of $H \rightarrow \tau \tau$, $H \rightarrow ZZ^* \rightarrow 4I$, $H \rightarrow \gamma \gamma \Rightarrow$ higher sensitivity.

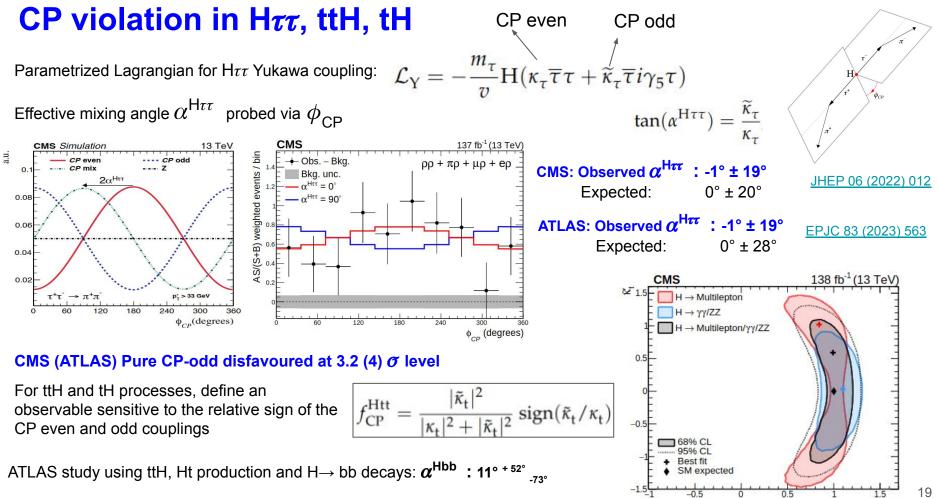
CP invariance in $H \rightarrow ZZ^* \rightarrow 4I$

SMEFT Lagrangian:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} O_i^{(6)}$$

 $O_i^{(6)}$: CP-odd dimension-6 operators, invariant under SM c_i : Wilson coeff.s, dimensionless, real \rightarrow constrain these couplings using data assuming a single Higgs CP-odd BSM coupling under different assumptions.

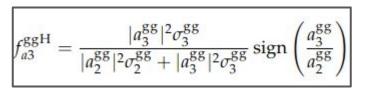

- Couplings scale as $1/\Lambda^2$
- Some couplings relevant for production, some at decay, some for both.


Using $H \rightarrow \gamma \gamma$

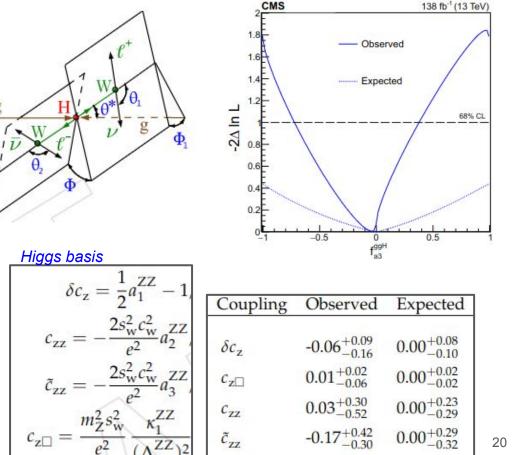
• Optimum Observable depends on CP-odd interference term of SM and BSM amplitudes.

PRL 131 (2023) 061802

	Operator	Structure	Coupling
-		Warsaw Basis	
	$O_{\Phi ilde W}$	$\Phi^\dagger \Phi ilde W^I_{\mu u} W^{\mu u I}$	$c_{H\widetilde{W}}$
	$O_{\Phi \tilde{W} B}$	$\Phi^{\dagger} au^{I} \Phi ilde{W}^{I}_{\mu u} B^{\mu u}$	$C_{H\widetilde{W}B}$
	$O_{\Phi ilde{B}}$	$\Phi^{\dagger}\Phi ilde{B}_{\mu u}B^{\mu u}$	$c_{H\widetilde{B}}$
		Higgs Basis	
	$O_{hZ\tilde{Z}}$	$h Z_{\mu u} ilde{Z}^{\mu u}$	\widetilde{c}_{zz}
	$O_{hZ\tilde{A}}$	$h Z_{\mu u} \tilde{A}^{\mu u}$	$\widetilde{c}_{z\gamma}$
	$O_{hA ilde{A}}$	$hA_{\mu u} ilde{A}^{\mu u}$	$\widetilde{c}_{\gamma\gamma}$



arXiv: 2303.05974


CMS-PAS-HIG-22-008

Search for anomalous Higgs-gluon coupling

- Distinct kinematics in the off-shell region lead to increased sensitivity (10-50%) to anomalous effects at the production vertex.
- Gluon fusion production with 2 jets \Rightarrow CP-odd a3 Hgg effective coupling due to a BSM pseudoscalar.

- A general test of the Higgs boson tensor structure and a search for CP violation in HVV interactions possible.
- Use $gg \rightarrow H+2$ jets, $H \rightarrow WW$, $ZZ \rightarrow$ leptonic decays.
- Simultaneous measurement of Higgs boson anomalous couplings to electroweak vector bosons performed in the framework of a SMEFT (Higgs or Warsaw basis).

Conclusion

- 11 years back the discovery of Higgs boson marked a milestone in particle physics.
- Analyses of Run 1 and Run 2 data of the LHC have led to a significant improvement on our understanding of its properties.
- Only a small sample results presented today to underline the expanse of the efforts towards deciphering the Higgs sector.
- Within uncertainties results are compatible with the SM expectations.
- Waiting for good amount of data volume to be collected during Run 3.
- Interesting results continue to pour in \rightarrow Stay tuned!
- High-Luminosity LHC, with Phase 2 upgraded detectors and further improved theoretical calculations, will make Higgs measurements even more interesting in the era of precision physics.

Back up

Statistical treatment

The combined results are obtained from a likelihood function defined as the product of the likelihoods of each input measurement.

The observed yield in each category of reconstructed events follows a Poisson distribution the parameter of which is the sum of the expected signal and background contributions.

The number of signal events in any category *k* is split into the different production and decay modes:

$$n_k^{ ext{signal}} = \mathcal{L}_k \sum_i \sum_f (\sigma_i B_f) (A \epsilon)_{if}^k$$

the sum indexed by *i* runs either over the production processes (ggF, VBF, WH, ZH, ttH, tH) or over the set of the measured production kinematic regions, and the sum indexed by *f* runs over the decay final states (ZZ, WW, $\gamma\gamma$, $Z\gamma$, bb, cc, $\tau^+\tau^-$, $\mu^+\mu^-$). \mathcal{L}_k : integrated luminosity of the dataset used in category *k*.

 $(A\epsilon)_{i}^{k}$: acceptance times selection efficiency factor for production process *i* and decay mode *f* in category *k*.