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Proton-Proton Collition

central particles:
jets, Higgs, etc.

intact, scattered
proton

proton remnants

proton proton

) DIS Partonic content of Proton
Partonic content of Proton
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Diffractive Processes in pp at the LHC

» Elastic interaction pp — pp Soft Diffractive LHC
* Interaction explained by the t cannel exchange of a colorless object
Two Gluon interaction - Pomeron (Pomeranchuk 1956)

Regge theory: (Gribov 1986) p(p1.s1) P (3, $3)

total Cross section, considering the optical theorem is given by:

or = AL-S“i(O)_1 p (p2. $2) P (P4, 54)



Elastic Scatering/diffraction

Reggeon trajectory
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- pQCD:

- using QCD the contribution to the scattering cross
section is Two Gluon interaction

2 Gluon generate Ladder Hard/BFKL Pomeron

kp_11,Yn—1
kp 1, yn

p-




» Elastic interaction pp — pp Soft Diffractive LHC

* Interaction explained by the Exchange of a colorless object between the pp
Pomeron + Odderon

¢ Pomeron and Odderon correspond to positive and negative C parity:
Pomeron is made of two gluons which leads to a +1 parity
Odderon is made of 3 gluons corresponding to a —| parity
Lukaszuk, Nicolescu, LNC 8 (1973) 405
Scattering amplitudes can be written as:
App = Even + Odd and App = Even — Odd

From the equations above, it is clear that observing a difference between pp and
pp way to observe the odderon

For pp — pp
*  We use special detectors to detect intact protons/anti-protons called Roman
Pots

e Roman pots installed on both sides of CMS at about 220 m from the
interaction point

o TOTEM/DO result Odderon evidence TOTEM, DO, PRL 127 (2021) 6,062003



Roman Pot detectors at the LHC

Thank
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Inelastic Telescopes:
charged particles in inelastic events:
-> multiplicities, rapidity gaps

T1:3.1<|n|<4.7, p; > 100 MeV

T2:5.3<|n|<6.5, p; > 40 MeV
= Inelastic Trigger
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Roman Pots: elastic & diffractive protons close to outgoing beams > Proton Trigger
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Mueller Dipole Approximation
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 HERA data represented the most direct way of probing that the virtual photon fluctuates into a gq pair long before
the scattering

e the gqq color dipole acts as a probe of the gluon distribution at small x

e the dipole transverse size r is preserved by the scattering

+  Photon wave function WY .z (r,z,Q?) in dipole approximation (known to NLO light cone
e N(r,Y,b)isthe dipole-Hadron scattering Amplitud

Scattering amplitud S(rp,Y,b) =1 — N(rp,Y,b) whereY =In (i) = In s rapidity

o o7, (Y,Q%) =2[d?r [d?b [dz||PxNr1(r,2 Q?)|?N(r,Y,b)

Quantum Chromodynamics at high Energy, Kovchegov and Levin Cambridge 2012
Mueller 2002



BK and BFKL equation

QCD at small xp; ~ Qz/s

Regge limit: Q% < s

Evolution in x BFKL equation
Small x, high Rapidity Y energy. High density. N(r
Y, b)
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Evalution in Q?:

DGLAP equation Better
resolution in the partons
Dokshitzer—Gribov-Lipatov—Altarelli—Parisi

0(N(x10,b,Y)) _ a szx
2T 2

X
% (N(xlz, b, Y) + N(XZOJ b, Y)
X12 X01
—(N(xm: br Y))

There is problem with this linear equation
and one need to introduce non linear term:
Saturation region

= 2

a X

— | d*x 2 (N (%12, b,Y) * N(x2,b,Y)
n X12 X01

Rigorous treatment requires solution of b-
dependent BK equation (or JIMWLK CGC) but is

complicated
Rezaeian and Schmidt Phys. Rev.D 88 (2013)



BFKL and BK equation: Transition to saturation and Geometric
Scaling

Stasto, Golec-Biernat and KwiecinskKi phys. Rev. Lett. 86 (2001) 596.

have shown that the HERA data on DIS at low x , functions of two independent
variables — the photon virtuality Q? and the Bjorken variable x , are consistent with
scaling in terms of the variable T

Saturation momentum: y

Q = Qfoe™ = Q% CH* - T=0%/Q (x—)l A=03-04

is to show that the scaling region for the
various distribution functions is in fact much
larger than the saturation region

Saturation region
Color Glass Condensate

Extended Geometric
Scaling region

Y=Inl/x

Balistky Phys. Rev. D75, 014001 (2007)

. Balitsky, Nucl. Phys. B463, 99 (1996)

Kovchgovlancu, Itakura, and Larry McLerran arXiv 0203.137
Jalilian-Marian-lancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK)




BFKL equation: Balitsky, Fadin, Kuraev and Lipatov

The solution of the BFKL equation grows like a power of center of mass
energy s, therefore violating the unitarity bound at very high energies.

To this energy we need to consider that Pomeron can splits into two
pomerons, just like in the fan diagram, but then the two pomerons merge
back into one Pomeron: Non linear term BK contributions

Unitary need to consider the pomeron loop diagrams In other words the
graphs containing pomerons not only splitting, but also merging together




BK evolution

d(N(x10,b,Y) a x§
alyo = 2 n'f dzxz x%zo_;gl (N(xlz, b, Y) + N(XZOI bl Y) _N(xlo’ b’ Y)

+N(x12,b,Y) * N(x50,b,Y))

in principle need to solve the fully impact parameter dependent Balitsky Kovchegov

(BK) equation this work: local approximation — b becomes

an external parameter

Initial condition at Y; is McLerran -Venugopalan model MV:

22
N(r,b,Y)=1—exp [— TLSSO ln( Ly e)]

T'J_A

Kowalski, Lappi, Marquet, Venugopalan, PRC 78 (2008) 045201

where initial saturation scales: Lappi, M'antysaari, PRD 88 (2013) 114020
2 f
Qso or proton
Q% = —
0 1/3 2
A3 x Q2 for nucleus




Analytical Solutions to the BK equation

- satisfying the initial condition given by the BFKL Pomeron
-  satisfying the Geometric Scaling inside the saturation region, Non-perturbative

. Unfortunately finding an exact analytical solution seems difficult task, its is non—linear.

In the saturation regime the series diverges, but allows us to construct an asymptotic solution by
analytical continuation

Perturbations approach

 First BFKL Pomeron Lipatov solution (1986)

Eigenfunctions of the Casimir operators of conformal algebra m
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Analytical Solutions to the BK equation

Perturbations approach

Y. Kovchegov arXiv 9905214
Perturbative solution and it is CV structure functions are outside of the saturation region.

- ) _ ) N
ON1(k,Y) 2aN, o\ - S / d\ 2N, _ k
L = — Ni(k.Y). Nk Y) = - Y v (—A — | C,.

aYy T X ( d1ln k) N1 (k. Y), 1(k,Y) 2mi “xp T X (=) A A

We show that as energy increases the scattering cross section of the quark—antiquark pair of a
fixed transverse separation on a hadron or nucleus given by the solution of BK equation inside of
the saturation region unitarizes

We have to admit that in order to construct a solution BK in coordinate space, N(xL, Y ), and the
corresponding structure function F2 one has to have a better knowledge of the momentum space
solution inside the saturation region.

A solution of BK would probably be very helpful in determining exact values of N(xL, Y ) and F2
at intermediately large rapidities

alN,

Ni(k,Y)?,

ONy(k,Y) 2aN, ( .
X
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m

Motika and Sadzikowski arXiv 230602118 Hight Twist corrections



Preliminary results:

The dipole-nucleus scattering amplitude N is
plotted (schematically) as a function of x.L.

One can see that, at small x| « Qi , we have N ~ 0
N

This result is natural, since in the zero-size dipole the color charges
of the quark and the anti-quark cancel each other, leading to
disappearance of the interactions with the target. This effect is known
as color transparency

at large dipole sizes x| > Qi, the growth stops and the amplitude

levels off (saturates) at N = 1.

The transition happens at around x | ~Qi :

N

Numerical solution
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Analytical Solutions to the BK equation

NonPerturbations approach

Levin Tuchin Solutions inside the saturation region GS
(2000)

1

N(r,,b,Y)=1-A(r,Y,b)and r, > ) we can find
L) = —@ 2 A(r,, Y, b)

Where z =Inr2Q2(Y) =a kY +Inr?Q2(Yy) = a kY + &,
ZZ

The solution es N(r,b,Y) =1-Ape 2¢



Our Proposal Homotopic Solution

e One can see that a numerical solution of the BK equation does not allow us to
introduce explicit dependence on Qs.

* we need to have the analytical solution in which we can see explicitly the
dependence of the scattering amplitude on Qs(Y;b).

* we suggest a procedure to find the solution to the BK equation as a sequence

of iterations, based on homotopy approach
Homotopy Method: L[u] + N:[u] =0- Kp,u]l = L[u] +p N [u]=0
L[u] linear part N [u]=Integral differential Operator

w, (Y, 210,b) = uop (Y, x10.b) + pus (Y, x10,b) + p° us (Y. x10,b) +

Llug] = 0 give de solution from linear part and

u; from the nonlinear part arXiv 2204.10111



BK in momentum representation

e Transformation to Momentum space
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Transformation to Momentum space
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Homotopic structure order p=0 in Saturation Region
z=In(Q¢(Y,b)r?) = @ (Y — ¥,) + In(QF (Y, b)r?) = §¢ + &

A
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T ST MY AN
NS ! N
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' £ = ax Y
Perturbative QCD '
{ED Ep = INOGQS (Y=0, b))

FIG. 1: Saturation region of QCD. The critical line (z=0) is shown in red. The initial condition for scattering with the dilute
system of partons (with proton) is given at £, = 0. For heavy nuclei the initial conditions are placed at Y4 = (1/3)In A > 1,
where A is the number of nucleon in a nucleus. The line, where they are given, is shown in blue.
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» Geometric Scaling solution M (%)
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FIG. 2: Fig. 2-a: Ny(z,&) versus z at fixed values of €. Fig. 2-b: Ny (z,€) versus £ at fixed §Y (z = kdY +&). Ng = 0.22;
7 =0.63, ¢ — 29 = 0.867, C; = 0.842, &' = 0.



* Homotopic structure order p = | in Saturation Region
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e Numerical Estimates
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FIG. 3: Fig. 3-a: N{ (z) versus z. Fig. 3-b: N (2,8Y) versus z at fixed §Y = as(Y — Ya4). The value of &' = 0.



Summary and outlook

we developed the homotopy approach for solving the non-linear evolution Balitsky-Kovchegov
equation

First, we solved the linearized version of the BK equation in the momentum space deep in the
saturation region. We found that this solution has the geometric scaling behavior for ¢ < E(,‘l

For & > f(‘,q we observe the violation of the geometric scaling behaviour in the saturation
region.

This solution satisfies the boundary and initial conditions which are given perturbative QCD
approach for r Q; < 1 and by McLerran-Venugopalan for Y = Y.

Finally in our approach, we have to take into account the remaining part of the non-linear
correction that have not been included in the linearized form of BK equation. It turns out that
these corrections are rather small indicating that our procedure gives a self consistent way to
account them

We believe that this method of finding solution, which allow us to treat the most essential part of
the scattering amplitude analytically.

The numerical part of the calculations is expressed through well converged integrals and can be
easily estimated.

We found a way to study the BK equation in Momentum or coordinated representation, which can
be extended to another process.

C. Contreras P1C2023
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Expanding of our approach to other SD/DD processes
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