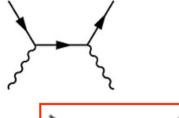
Searching for New Physics at the LHC Using Effective Field Theory

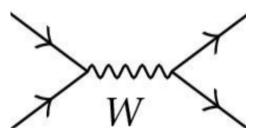
The Standard Model Effective Field Theory (SMEFT) Results from a global analysis Case study 1: Convergence of SMEFT approximation Case study 2: Interpreting m_W Case study 3: Windows on dimension-8

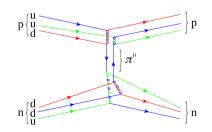
John Ellis

Looking Beyond the Standard Model with the SMEFT


"...the direct method may be used...but indirect methods will be needed in order to secure victory...."

"The direct and the indirect lead on to each other in turn. It is like moving in a circle...." Who can exhaust the possibilities of their combination?"


Sun Tzu


Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force
- Dimension-6 operators: form = S, P, V, A, T?
 Due to exchanges of massive particles?
- V-A → massive vector bosons → gauge theory
- Yukawa's meson theory of the strong N-N force
 − Due to exchanges of mesons? → pions
- Chiral dynamics of pions: $(\partial \pi \partial \pi)\pi\pi$ clue \rightarrow QCD

Standard Model Effective Field Theory a more powerful way to analyze the data

- Assume the Standard Model Lagrangian is correct (quantum numbers of particles) but incomplete
- Look for additional interactions between SM particles due to exchanges of heavier particles
- Analyze Higgs data together with electroweak precision data and top data
- Most efficient way to extract largest amount of information from LHC and other experiments
- Model-independent way to look for physics beyond the Standard Model (BSM)

Summary of Analysis Framework

• Include all leading dimension-6 operators?

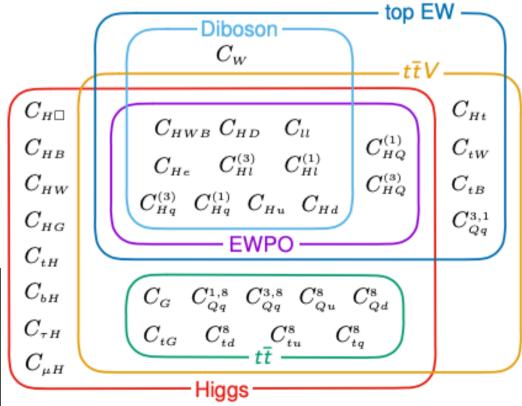
$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

- Simplify by assuming flavour SU(3)⁵ or
 SU(2)² X SU(3)³ symmetry for fermions
- Work to linear order in operator coefficients, i.e. $\mathcal{O}(1/\Lambda^2)$
- Use G_F , M_Z , α as input parameters

Dimension-6 SMEFT Operators

- Including 2- and 4fermion operators
- Different colours for different data sectors
- Grey cells violate
 SU(3)⁵ symmetry
- Important when including top observables

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779


		X^3		H^6 and H^4D^2			$\psi^2 H^3$			
	$\mathcal{O}_{G} = f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			\mathcal{O}_H $(H^{\dagger}H)^3$			\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$		
	$\mathcal{O}_{\tilde{G}} = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			$\mathcal{O}_{H\square} \qquad (H^{\dagger}H)\square(H^{\dagger}H)$			${\cal O}_{uH}$	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$		
	$\mathcal{O}_{W} = \varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$			\mathcal{O}_{HD}	(H)	$^{\dagger}D^{\mu}H)^{\star}\left(H^{\dagger}D_{\mu}H ight)$	$\mathcal{O}_{_{dH}}$	$(H^{\dagger}H)(\bar{q}_p d_r H)$		
	$\mathcal{O}_{\widetilde{W}} = \varepsilon^{IJK} \widetilde{W}_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu}$									
		X^2H^2				$\psi^2 X H$	$\psi^2 H^2 D$			
C	$\mathcal{O}_{_{HG}}$	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$)	${\cal O}_{eW}$	($\bar{l} \sigma^{\mu u} e_r \tau^I H W^I_{\mu u}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$		
	$\mathcal{O}_{H\widetilde{G}}$	\sim		${\cal O}_{eB}$		$(\bar{l}_p \sigma^{\mu u} e_r) H B_{\mu u}$	${\cal O}_{Hl}^{(3)}$	$(H^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} H)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$		
C	\mathcal{O}_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	A	nomal	ous	$_{p}\sigma^{\mu u}T^{A}u_{r})\widetilde{H}G^{A}_{\mu u}$	${\cal O}_{_{He}}$	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H) (\bar{e}_p \gamma^{\mu} e_r)$		
C	${\cal O}_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu u} W^{I\mu u}$				$_{p}\sigma^{\mu u}u_{r}) au^{I}\widetilde{H}W^{I}_{\mu u}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i D_{\mu} H) (\bar{q}_p \gamma^{\mu} q_r)$		
C	$\mathcal{O}_{{}_{HB}}$	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	r	nagne	tic	$(\bar{q}_p \sigma^{\mu u} u_r) \hat{l}^{\dagger} B_{\mu u}$	${\cal O}_{Hq}^{(3)}$	$(H^{\dagger}i \overleftrightarrow{D_{\underline{\mu}}}^{I} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
C	${\cal O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	n	nomer	nts	$_{p}\sigma^{\mu u}T^{A}d_{r}HG^{A}_{\mu u}$	${\cal O}_{Hu}$	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$		
O	\mathcal{O}_{HWB}	$H^{\dagger}\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu}$	J	U dW		$d_{lp}\sigma^{\mu\nu}d_r)\tau HW^I_{\mu\nu}$	${\cal O}_{Hd}$	$(H^{\dagger}i D_{\mu} H) (\bar{d}_p \gamma^{\mu} d_r)$		
\mathcal{O}	$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$		\mathcal{O}_{dB}		$\bar{q}_p \sigma^{\mu u} d_{ m o} H B_{\mu u}$	${\cal O}_{{}_{Hud}}$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$		
		$(\bar{L}L)(\bar{L}L)$			$(\bar{R}R)(RR)$			$(\bar{L}L)(\bar{R}R)$		
	\mathcal{O}_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$		$\mathcal{O}_{ee} = (\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$			\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$		
11 1	$\mathcal{O}_{_{qq}}^{_{(1)}}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$		\mathcal{O}_{uu}			\mathcal{O}_{lu}	$ar{\langle v_p \gamma_\mu l_r angle} (ar{u}_s \gamma^{\mu} u_{ u})$		
	$\mathcal{O}_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q$	t)	11	$\mathcal{O}_{dd} = (ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$		\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$		
	$\mathcal{O}_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$			$\mathcal{O}_{eu} = (c_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$		\mathcal{O}_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		
	${\cal O}_{lq}^{(3)}$	$(l_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$		\mathcal{O}_{ed}		$ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (u_s \gamma^\mu u_t)$		
				$\mathcal{O}_{ud}^{(1)}$	(*	$\bar{u}_p \gamma_\mu u_r) (a_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$\left(\bar{q}_p\gamma_{\mu}T^A q_r)(\bar{u}_s\gamma^{\mu}T^A u_t)\right)$		
	Flavour anomalies			$\mathcal{O}_{ud}^{(8)}$	$(\bar{u}_p\gamma)$	$(\bar{d}_s \gamma^\mu T^A d_t) (\bar{d}_s \gamma^\mu T^A d_t)$	$\mathcal{O}_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$		
	ГІА	ivour anomalies		11						
	ГId	ivour anomalies					$\mathcal{O}_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		
		$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$				R vie	lating	Barvon		
	$(ar{L}R)$ \mathcal{O}_{ledq}			\mathcal{O}_{duq}		$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d ight) ight)$	$(a_p^{\alpha})^T C u_r^{\beta}$	$[(q_s^{\gamma j})^T C l_t^r]$ Baryon		
C	$(ar{L}R) onumber \ \mathcal{O}_{ledq} onumber \ \mathcal{O}_{quqd}$	$(ar{R}L) ext{ and } (ar{L}R)(ar{L}R) \ (ar{l}_p^j e_r)(ar{d}_s q_t^j) \ (ar{q}_p^j u_r) arepsilon_{jk}(q_s^* d_t)$		\mathcal{O}_{duq} \mathcal{O}_{qqu}		$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}areps$	$(a_p^{lpha})^T C u_r^{eta}] = (a_p^{lpha})^T C q_r^{eta k}$	$\begin{bmatrix} (q_s^{\gamma j})^T C l_t^{\kappa} \\ [(u_s^{\gamma})^T C e_t] \end{bmatrix} $ decay		
C	$egin{array}{c} (ar{L}R) \ \mathcal{O}_{ledq} \ \mathcal{O}_{quqd} \ \mathcal{O}_{quqd}^{(1)} \ \mathcal{O}_{quqd}^{(8)} \end{array}$	$(ar{R}L) ext{ and } (ar{L}R)(ar{L}R) \ (ar{l}_p^j e_r)(ar{d}_s q_t^j) \ (ar{q}_p^j u_r) arepsilon_{jk}(ar{q}_s^a d_t) \ (ar{q}_r^j T^A u_r) arepsilon_{str}(ar{q}_s^k T^A d_t)$		\mathcal{O}_{duq} \mathcal{O}_{qqu}		$ \begin{array}{c} \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\\\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(q_{p}^{\alpha}\right)\\\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left(q_{p}^{\alpha}\right)\right] \end{array} $	$egin{aligned} & \left[u_{p}^{lpha} ight)^{T} C u_{r}^{eta} ight] \ & \left[u_{p}^{lphaj} ight)^{T} C q_{r}^{etak} \ & \left[u_{p}^{lphaj} ight)^{T} C q_{r}^{etak} \end{aligned}$	$\begin{bmatrix} (q_s^{\gamma j})^T C l_t^{\kappa} \\ [(u_s^{\gamma})^T C e_t] \\ [(u_s^{\gamma m})^T C l_t^{\kappa}] \end{bmatrix} decay$		
C	$(ar{L}R) onumber \ \mathcal{O}_{ledq} onumber \ \mathcal{O}_{quqd}$	$(ar{R}L) ext{ and } (ar{L}R)(ar{L}R) \ (ar{l}_p^j e_r)(ar{d}_s q_t^j) \ (ar{q}_p^j u_r) arepsilon_{jk}(q_s^* d_t)$	$l_t)$	\mathcal{O}_{duq}		$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}areps$	$egin{aligned} & \left[u_{p}^{lpha} ight)^{T} C u_{r}^{eta} ight] \ & \left[u_{p}^{lphaj} ight)^{T} C q_{r}^{etak} \ & \left[u_{p}^{lphaj} ight)^{T} C q_{r}^{etak} \end{aligned}$	$\begin{bmatrix} (q_s^{\gamma j})^T C l_t^{\kappa} \\ [(u_s^{\gamma})^T C e_t] \\ [(u_s^{\gamma m})^T C l_t^{\kappa}] \end{bmatrix} decay$		

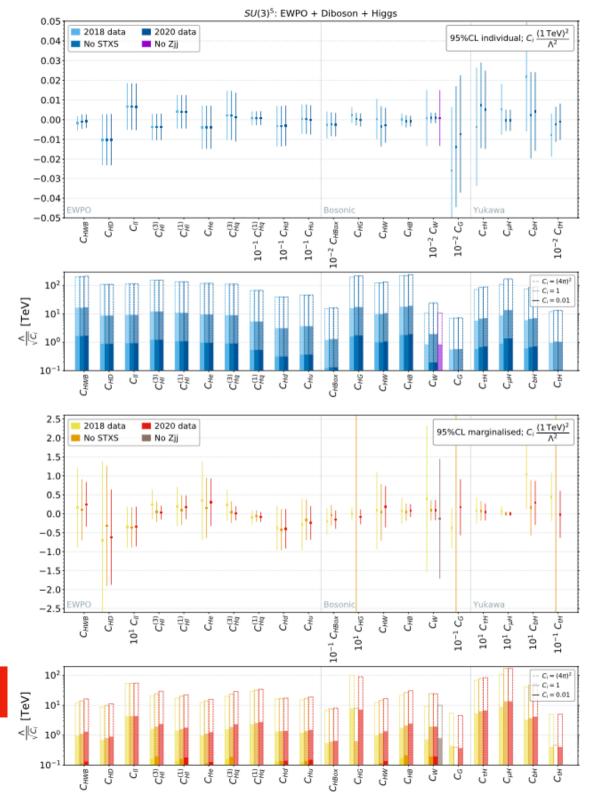
Global SMEFT Fit to Top, Higgs, Diboson, Electroweak Data

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

- Global fit to dimension-6 operators using precision electroweak data, W+W- at LEP, top, Higgs and diboson data from LHC Runs 1, 2
- Search for BSM
- Constraints on BSM
 - At tree level
 - At loop level

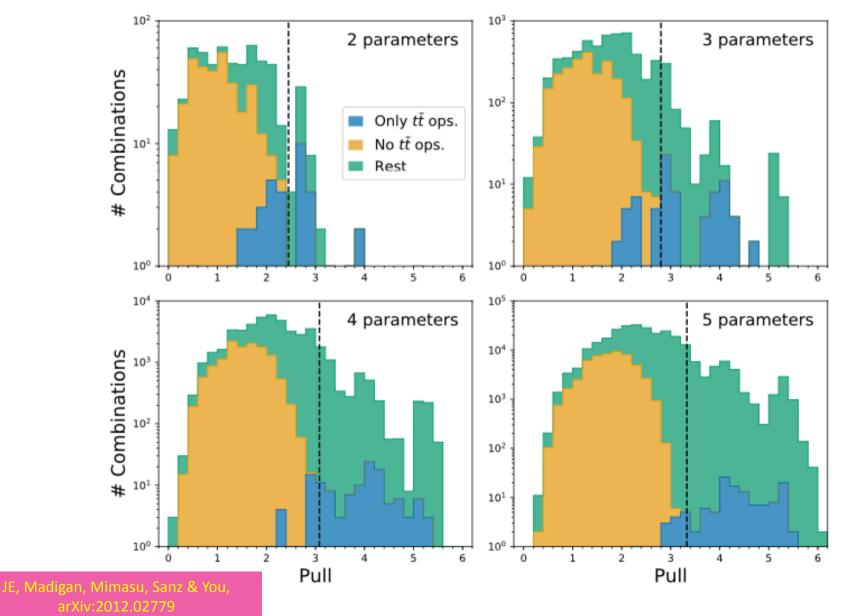
341 measurements included in global analysis

Data included in Global Fit

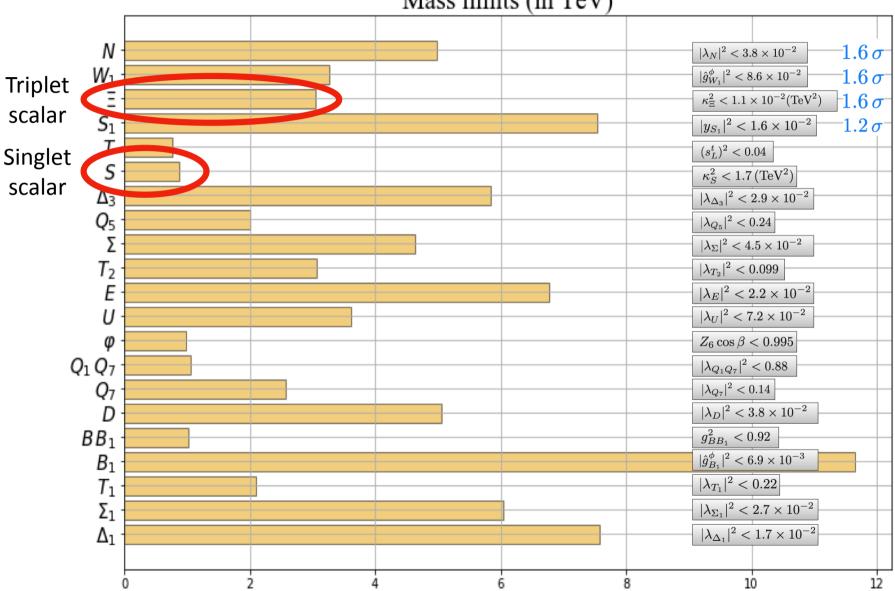

EW precision observables								
Precision electroweak measurem.	LHC Run 2 Higgs	Tevatr	on & Run 1 top	nobs	Ref.			
$\Gamma_Z, \sigma^0_{\text{had}}, R^0_{\ell}, A^\ell_{FB}, A_\ell(\text{SLD}), A$	ATLAS combination (Tevatro	on combination of differential $t\bar{t}$ forward-backward asymmetry,	4	[7]			
Combination of CDF and D0 W	including ratios of bra				nobs	Ref.		
LHC run 1 W boson mass measu	Signal strengths coars	$d\sigma$	ATLA Run 2 top $\frac{d\sigma}{d\sigma}$					
hite fui f tr boboi mass meas	CMS LHC combinatio	$\overline{dm_{t\bar{t}}}$ ATLA	CMS $t\bar{t}$ differential distributions in the dilepton channel.		6	[36,		
Diboson LEP & LHC	Production: ggF, VB	amet	dm, 7		10	231]		
$W^+ W^-$ angular distribution me	Decay: $\gamma\gamma$, ZZ , W^+W	CMS t	CMS $t\bar{t}$ differential distributions in the ℓ +jets channel. $d\sigma_{-}$		10	[37]		
$W^+ W^-$ total cross section meas	CMS stage 1.0 STXS	$\frac{d\sigma}{dm_{t\bar{t}}}$	$\frac{dm_{t\bar{t}}}{ATLAS}$ measurement of differential t \bar{t} charge asymmetry, $A_C(n)$	m)	5	[38]		
final states for 8 energies	13 parameter fit \mid 7 pa	CMS 1 dilepte	ATLAS measurement of differential to charge asymmetry, $A_C(t)$ ATLAS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	(n _{tt}).	2	[39]		
$W^+ W^-$ total cross section meas	CMS stage 1.0 STXS	ATLA	CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z} $		11	[40]		
qqqq final states for 7 energies	CMS stage 1.1 STXS	dilepte	CMS $t\bar{t}Z$ differential distributions.		44	[41]		
$W^+ W^-$ total cross section meas	CMS differential cross		$\frac{d\sigma}{dp_Z^T}$ $\frac{d\sigma}{d\cos\theta^*}$					
&~qqqq final states for 8 energies	tion in the $WW^* \to \ell$	$A_C(m)$ CMS t	CMS measurement of differential cross sections and charge rat	ios for t-	5 5	[42]		
ATLAS W^+W^- differential cro	$\frac{d\sigma}{dn_{jet}}$ $\frac{d\sigma}{dp_H^T}$	$\frac{d\sigma}{dm_{t\bar{t}}dy}$	channel single-top quark production.					
$p_T > 120$ GeV overflow bin	ATLAS $H \to Z \gamma$ sign	ATLA	$\frac{d\sigma}{dp_{t+\bar{t}}^T} \mid R_t\left(p_{t+\bar{t}}^T\right)$					
ATLAS W^+W^- fiducial differen	ATLAS $H \rightarrow \mu^+ \mu^-$ si	decay. ATLA	CMS measurement of t -channel single-top and anti-top cross se	ections.	4	[43]		
$\frac{d\sigma}{dp_{\ell_1}^T}$		f_0, f_L	$\sigma_t, \sigma_{\bar{t}}, \sigma_{t+\bar{t}} \& R_t.$					
$ap_{\tilde{\ell}_1}$ ATLAS $W^{\pm} Z$ fiducial differentia	cross section in the l^+	CMS	CMS measurement of the <i>t</i> -channel single-top and anti-top cross	sections.	1 1 1 1	[44]		
	t cross section in the c	f_0, f_L	$\sigma_t \sigma_{\bar{t}} \sigma_{t+\bar{t}} R_t.$		41.4	[47]		
$\frac{\frac{d\sigma}{dp_Z^{\rm T}}}{\text{CMS }W^{\pm}Z \text{ normalised fiducial d}}$	· (T	ATLA CMS 1	CMS <i>t</i> -channel single-top differential distributions. $d\sigma = \int d\sigma$		4 4	[45]		
	inerential cross section	ATLA	$\frac{d\sigma}{dp_{t+\bar{t}}^T} \mid \frac{d\sigma}{d y_{t+\bar{t}} }$	0000				
channel, $\frac{1}{\sigma} \frac{d\sigma}{dp_Z^T}$		$\frac{d\sigma}{dp_t^T}$	$\begin{array}{c} \text{ATLAS } tW \text{ cross section measurement.} \\ \text{GMS } tZ \text{ sector measurement.} \\ \end{array}$	easu	remei	nts		
ATLAS Zjj fiducial differential c	ross section in the $\ell^+\ell^-$	CMS :	$\begin{array}{c} \text{CMS } tZ \text{ cross section measurement.} \\ \text{CMS } tW \text{ cross section measurement.} \end{array}$					
LHC Run 1 Higgs		$CMS_{d\sigma}$	ATLAS tZ cross section measurement.	clude	din			
		$dp_{t+\bar{t}}^T$	CMS tZ ($Z \to \ell^+ \ell^-$) cross section measurement.		M III	H		
ATLAS and CMS LHC Run 1 co	00 0	CMDIE			- 1 * -			
Production: ggF , VBF , ZH , WH & ttH			$S_{s-channel single-top cross section measurement.} gloc$	bai an	alysis	5		
Decay: $\gamma\gamma$, ZZ, W^+W^- , $\tau^+\tau^-$ &			W cross section measurement.	1				
ATLAS inclusive $Z\gamma$ signal streng	gth measurement		5 tW cross section measurement in the single lepton channel	1	[34]	770		
		LAILAS	<i>tW</i> cross section measuremen JE, Madigan, Mimasu, Sana	z & You, ar	IV:2012.02	//9		

Dimension-6 Constraints with Flavour-Universal SU(3)⁵ Symmetry

- Individual operator coefficients
- Marginalised over all other
 operator
 coefficients


No significant deviations from SM

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779



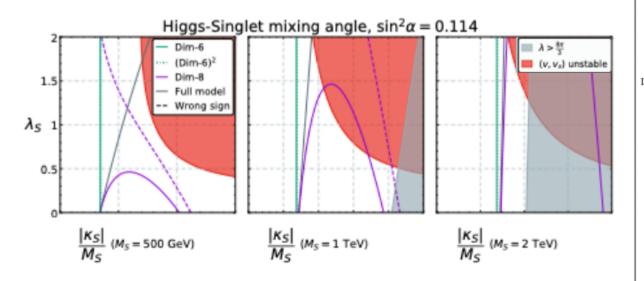
Model-Independent BSM Survey

Switch on random subsets of 2, 3, 4 or 5 operators

Single-Field Extensions of the Standard Model

Mass limits (in TeV)

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779


Check on Reliability of SMEFT

Singlet Scalar Field:

dimension-6, -8 and full model

$$\mathcal{L}_{s} = \frac{1}{2}(D_{\mu}S)(D^{\mu}S) - \frac{1}{2}M_{s}^{2}SS - (\kappa_{s})SH^{\dagger}H \\ - (\lambda_{s})SSH^{\dagger}H - \kappa_{s}^{3}SSS - (\kappa_{s}^{4})SSSS$$

Main effect via singlet mixing with Higgs: good convergence for $M_S > 500 \text{GeV}$

JE, Mimasu & Zampedri, arXiv:2304.06663

SMEFT at dimension-6, -8

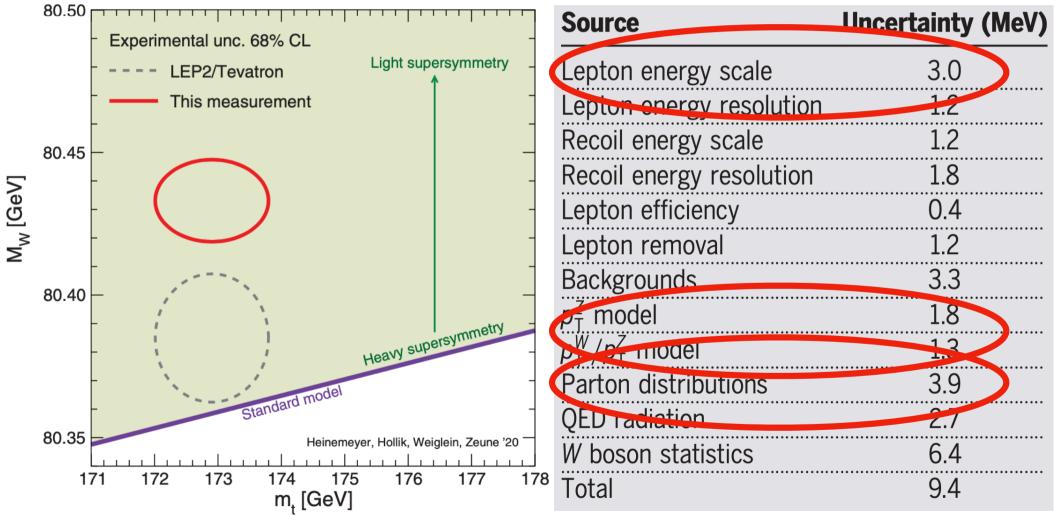
Dim - 6	C_H	$-rac{\kappa_S^2}{M_S^2}\left(\lambda_S\left(1-rac{4\mu^2}{M_S^2} ight)-rac{\kappa_S\kappa_{S^3}}{M_S^2}\left(1-rac{6\mu^2}{M_S^2} ight) ight)$					
	$C_{H\square}$	$-rac{\kappa_S^2}{2M_S^2}\left(1-rac{4\mu^2}{M_S^2} ight)$					
	C_{H^8}	$\frac{\kappa_s^2}{M_S^2} \Big(2(\lambda_S - 2\lambda)^2 - \frac{6\kappa_S\kappa_{s^3}}{M_S^2} (\lambda_S - 2\lambda) + \frac{\kappa_s^2}{M_S^2} \Big(\frac{9\kappa_{s^3}^2}{2M_S^2} - \kappa_{s^4} \Big) \Big)$					
	$C_{H^6}^{(1)}$	$rac{2\kappa_S^2}{M_S^2} \Big(2(\lambda_S-2\lambda) - rac{3\kappa_S\kappa_{S^3}}{M_S^2} \Big)$					
	$C_{H^4}^{(3)}$	$\frac{2\kappa_S^2}{M_S^2}$					
	$[C_{l\psi H^5}/C_{q\psi H^5}]_{ m ws}$	$-[y_\psi]_{\mathrm{wx}}rac{\kappa_S^2}{M_S^2}\Big(2(\lambda_S-2\lambda)-rac{3\kappa_S\kappa_{S^3}}{M_S^2}\Big);\psi=u,d,e$					
	$[C^{(1)}_{l^2\psi^2H^2}/C^{(1)}_{q^2\psi^2H^2}]_{\rm ways}$	$-[y_\psi]_{\mathrm{ws}}[y_\psi^\dagger]_{\mathrm{ys}}rac{\kappa_S^2}{4M_S^2};\psi=u,d,e$					
	$[C^{(2)}_{l^2e^2H^2}/C^{(2)}_{q^2d^2H^2}]_{\rm wxys}$	$-[y_\psi]_{ m wz}[y_\psi^\dagger]_{ m yx}rac{\kappa_S^2}{4M_S^2};\psi=d,e$					
	$[C^{(2)}_{q^2 u^2 H^2}]_{wxyu}$	$[y_u]_{ m ws}[y_u^{\dagger}]_{ m yx}rac{\kappa_S^2}{4M_S^2}$					
Dim - 8	$[C^{(3)}_{l^2\psi^2H^2}/C^{(5)}_{q^2\psi^2H^2}]_{\rm ways}$	$[y_\psi]_{ ext{wx}}[y_\psi]_{ ext{yx}}rac{\kappa_N^2}{2M_S^2};\psi=u,d,e$					
Dini - 0	$[C_{lequH^2}^{(1)}]_{wxys}$	$-[y_e]_{wx}[y_u]_{yx}rac{\kappa_S^2}{2M_S^2}$					
	$[C_{leqdH^2}^{(1)}]_{wxyx}$	$[y_e]_{ m wx}[y_d^\dagger]_{ m yx}rac{\kappa_d^2}{2M_S^2}$					
	$[C^{(1)}_{q^2 u d H^2}]_{ways}$	$[y_u]_{wx}[y_d]_{yx}rac{\kappa_x^2}{2M_S^2}$					
	$[C_{lequH^2}^{(2)}]_{wsys}$	$-[y_e]_{ m wx}[y_u]_{ m yz}rac{\kappa_S^2}{2M_S^2}$					
	$[C_{leqdH^2}^{(2)}]_{wxys}$	$[y_e]_{wx}[y_d^\dagger]_{ye}rac{\kappa_{\sigma}^2}{2M_S^2}$					
	$[C_{q^2 u d H^2}^{(2)}]_{wxys}$	$-[y_u]_{_{_{WX}}}[y_d]_{_{_{YX}}} \frac{\kappa_S^2}{2M_S^2}$					
	$[C_{lequH^2}^{(5)}]_{wxys}$	$[y_e]_{w_x}[y_u^{\dagger}]_{y_x}rac{\kappa_S^2}{M_S^2}$					
	$[C_{leqdH^2}^{(3)}]_{wxyz}$	$[y_e]_{w \times} [y_d]_{y \times} rac{\kappa_S^2}{M_S^2}$					
	$[C_{q^2 u d H^2}^{(5)}]_{wxyx}$	$[yd]_{ws}[y_{m}^{\dagger}]_{ys}rac{\kappa_{S}^{2}}{M_{S}^{2}}$					
	$[C^{(1)}_{l\psi H^3D^2}/C^{(1)}_{q\psi H^3D^2}]_{\rm ws}$	$-[y_\psi]_{wx}rac{2\kappa_x^2}{M_X^2};\psi=u,d,e$					

Check on Reliability of SMEFT Triplet Scalar Field:

dimension-6, -8 and full model

0.5

$$\mathcal{L}_{\Xi} = \frac{1}{2} (D_{\mu} \Xi^{a}) (D^{\mu} \Xi^{a}) - \frac{1}{2} M_{\Xi}^{2} (\Xi^{a} \Xi^{a}) - \kappa_{\Xi} H^{\dagger} \Xi^{a} \sigma^{a} H + \\ - \lambda_{\Xi} (\Xi^{a} \Xi^{a}) (H^{\dagger} H) - \frac{1}{4} \eta_{\Xi} (\Xi^{a} \Xi^{a})^{2} ,$$


EWPO & μ_h^i (CDF m_W) Constrained by EWPOs: could modify M_W $M_{\Xi} = 1 \text{ TeV}$ Dim 6 λ= Dim-8 Good convergence for Full (m_w only) $M_{\Xi} = 1 \,\mathrm{TeV}$ Unitarity/ 0 Boundedness 01 0.2 0.3 0.0 0.4 $\frac{|\kappa_{\Xi}|}{M_{\Xi}}$

JE, Mimasu & Zampedri, arXiv:2304.06663

SMEFT at dimension-6, -8

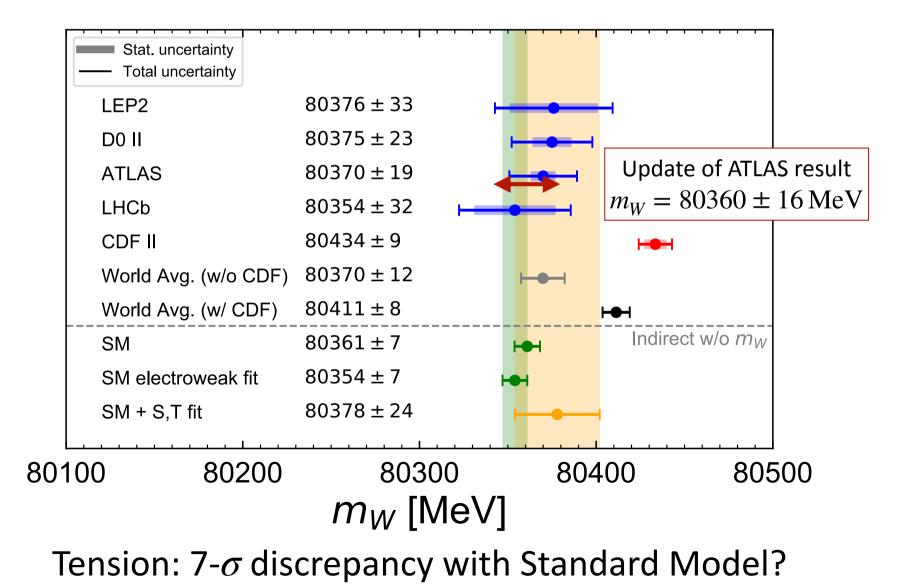
	C_H	$\frac{\kappa_{\Xi}^2}{M_{\Xi}^2} \left((4\lambda - \lambda_{\Xi}) \left(1 - \frac{4\mu^2}{M_{\Xi}^2} \right) - \frac{5\mu^2 \kappa_{\Xi}^2}{M_{\Xi}^6} \right)$
Dim - 6	C_{HD}	$-rac{2\kappa_{\Xi}^2}{M_{\Xi}^2}\left(1-rac{4\mu^2}{M_{\Xi}^2} ight)$
	$C_{H\square}$	$\frac{\kappa_{\Xi}^2}{2M_{\Xi}^2}\left(1-\frac{4\mu^2}{M_{\Xi}^2}\right)$
	$[C_{\psi H}]_{wx}$	$[y_{\psi}]_{wx} \frac{\kappa_{\Xi}^2}{M_{\Xi}^2} \left(1 - \frac{4\mu^2}{M_{\Xi}^2}\right); \psi = u, d, e$
	C_{H^8}	$\frac{2\kappa_{\Xi}^2}{M_{\Xi}^2}\left((2\lambda - \lambda_{\Xi})^2 + \frac{\kappa_{\Xi}^2}{M_{\Xi}^2}(3\lambda_{\Xi} - 5\lambda - \frac{\eta_{\Xi}}{8})\right)$
	$C_{H^6}^{(1)}$	$-\frac{\kappa_{\pi}^4}{M_{\Xi}^4}$
	$C_{H^6}^{(2)}$	$\frac{4\kappa_{\Xi}^2}{M_{\Xi}^2}\left(\lambda_{\Xi} - 2\lambda + \frac{\kappa_{\Xi}^2}{M_{\Xi}^2}\right)$
	$C_{H^4}^{(1)}$	$\frac{4\kappa_{\Xi}^2}{M_{\Xi}^2}$
	$C_{H^4}^{(3)}$	$-\frac{2\kappa_{\Xi}^2}{M_{\Xi}^2}$
	$[C_{l\psi H^5}/C_{q\psi H^5}]_{\rm wx}$	$-[y_{\psi}]_{wx}\frac{2\kappa_{\Xi}^{2}}{M_{\Xi}^{2}}\left(\lambda_{\Xi}-2\lambda+\frac{\kappa_{\Xi}^{2}}{2M_{\Xi}^{2}}\right); \psi=u, d, e$
	$[C^{(1)}_{l^2\psi^2H^2}/C^{(1)}_{q^2\psi^2H^2}]_{\rm wxys}$	$-[y_{\psi}]_{\scriptscriptstyle \mathrm{WZ}}[y_{\psi}^{\dagger}]_{\scriptscriptstyle \mathrm{YX}}rac{3\kappa_{\Xi}^2}{4M_{\Xi}^2};\psi=u,d,e$
	$[C^{(2)}_{l^2e^2H^2}/C^{(2)}_{q^2d^2H^2}]_{\rm wxyz}$	$[y_\psi]_{\mathrm{ws}}[y_\psi^\dagger]_{\mathrm{yx}}rac{\kappa_\Xi^2}{4M_\Xi^2};\psi=d,e$
Dim - 8	$[C^{(2)}_{q^2 u^2 H^2}]_{\rm wxys}$	$-[y_u]_{\scriptscriptstyle m WZ}[y_u^\dagger]_{\scriptscriptstyle m YX}rac{\kappa_{ar{lpha}}^2}{4M_{ar{lpha}}^2}$
	$[C^{(3)}_{l^2\psi^2H^2}/C^{(5)}_{q^2\psi^2H^2}]_{\rm wxyz}$	$[y_{\psi}]_{\mathrm{wx}}[y_{\psi}]_{\mathrm{yx}}\frac{\kappa_{\Xi}^2}{2M_{\Xi}^2}; \ \psi=u,d,e$
	$[C_{lequH^2}^{(1)}]_{wxyx}$	$[y_e]_{ m wx}[y_u]_{ m yx}rac{5\kappa_{\Xi}^2}{2M_{\Xi}^2}$
	$[C^{(1)}_{leqdH^2}]_{wxyz}$	$[y_e]_{ m wz}[y_d^\dagger]_{ m yz}rac{5\kappa_{ m z}^2}{2M_{ m z}^2}$
	$[C_{q^2 u d H^2}^{(1)}]_{wxyz}$	$-[y_u]_{wx}[y_d]_{yx}rac{5\kappa_{\Xi}^2}{2M_{\Xi}^2}$
	$[C_{lequH^{2}}^{(2)}]_{wxyx}$	$[y_e]_{wx}[y_u]_{yx}rac{\kappa_{\pm}^2}{2M_{\pm}^2}$
	$[C_{leqdH^2}^{(2)}]_{wxyz}$	$-[y_e]_{\scriptscriptstyle m wx}[y_d^\dagger]_{\scriptscriptstyle m yx}rac{\kappa_{\Xi}^2}{2M_{\Xi}^2}$
	$[C_{q^2 u d H^2}^{(2)}]_{w \times y \pi}$	$[y_u]_{\mathrm{wx}}[y_d]_{\mathrm{yz}}rac{\kappa_{\Xi}^2}{2M_{\Xi}^2}$
	$[C_{lequH^2}^{(5)}]_{wxys}$	$[y_e]_{\mathrm{wx}}[y_u^\dagger]_{\mathrm{yx}}rac{\kappa_{\Xi}^2}{M_{\Xi}^2}$
	$[C^{(3)}_{leqdH^2}]_{wxyz}$	$[y_e]_{\mathrm{wx}}[y_d]_{\mathrm{yz}}rac{\kappa_{\Xi}^2}{M_{\Xi}^2}$
	$[C_{q^2 u d H^2}^{(5)}]_{w \times y \pi}$	$[y_d]_{\mathrm{wx}}[y_u^\dagger]_{\mathrm{yz}}rac{\kappa_\Xi^2}{M_\Xi^2}$
	$[C^{(2)}_{l\psi H^3D^2}/C^{(2)}_{q\psi H^3D^2}]_{wx}$	$-[y_\psi]_{\mathrm{wx}}rac{4\kappa_{\Xi}^2}{M_{\Xi}^2};\psi=u,d,e$

CDF Measurement of the Mass of the W Boson

Biggest uncertainties: lepton energy, p_T model, parton distributions, backgrounds

CDF Collaboration, Science 376 (2022) p170

Theoretical Interpretations of W Mass


taking CDF measurement at face value

90 papers and counting!

3667	DM	Zhu		GUT, finite group	Wilson			
	Inert H	Fan		Extra U(1)	Zhang			
3797		Lu	8266	Seesaw	Borah			
	Relation to g-2	Athron	8390	Zee model	Chowdhury			
	Axion, chameleon		8406	2HDM	Arcadi			
4191		Strumia	8440	Beta decay	Cirigliano			
4202								
4202		Yang de Blas	8546	Oblique	Carpenter	4445	2HDM	Botella
			8568	Seesaw	Popov			
	SUSY GMSB	Du	9001	2HDM	Ghorbani	1437	2HDM	Kim
	SUSY NMSSM	Tang	9029	Stueckelberg	Du			-
	non-standard H	Cacciapaglia	9031	Leptoquarks	Bhaskar		Braneworld	Barman
	RH neutrinos	Blennow			_		2HDM	Kim
4710	SUSY NMSSM	Cao	9376	Triplet	Batra		Dark photon	Thomas
_			9477		Cao		Leptoquark+VLQ	He
	Seesaw triplet	Cheng		Extra U(1)	Zeng	2205	bs anomalies	Li
5085	2HDM	Song		Extra U(1)	Baek	2217	DM + g-2	Dcruz
5260	SMEFT	Bagnaschi		DM fermions	Borah			
5267	Custodial symm	Paul	5071	Diviterinions	boran	2788	ResBos2	Isaacson
5269	2HDM	Bahl	10120	SMEFT	da Silva			
5283	S&T	Asadi			Cheng	3877	GUT triplet	Evans
5284	Higgs physics	Di Luzio		Dark photon	0	3917	VLQ	Chowdhury
5285	FlexibleSUSY	Athron		Triplet seesaw	Heeck	3942	PDFs	Gao
5296	S&T, SMEFT	Gu	10375	FOPT triplet	Addazi	4016	Lepton portal	Kim
5302	D3-Brane	Heckman						
5303	2HDM	Babu	10338	2HDM	Lee	4473	LLP	Giudice
						4824	SO(10) axion	Lazarides
5728	2HDM	Heo		Extra U(1)	Cai		SU(5)	Senjanovic
	Georgi-Machacek		11755	2HDM	Benbrik		Triplet	Ghosh
	Leptoquark	Cheung				5041	mpier	Gillosh
	VL quarks	Crivellin	11871	nu-lepton collider	Yang	5610	Coloured scalars	Miralles
	Single-field	Endo	11945	Scotogenic DM	Batra	5010	coloureu scalars	winanco
	2HDM + singlet	Biekötter	11991	Atomic PV	Tran Tan	0215	SESM	Li
	SMEFT	Balkin	12018	2HDM	Abouabid	8215	SESIVI	u
3992	SIVIEFI	Daikin	12453	Colour-octet	Gisbert	0100	CUCV 221	Dadeiaura
6227		K			-	9109	SUSY 331	Rodriguez
	Non-local SM	Krasnikov	12898	Georgi-Machacek	Chen			
6485		Ahn	13027	Extra U(1)	Zhou			
6505		Han						
6541	RPV MSSM	Zheng	13690	RG running	Gupta			
	-							
	Lepton portal DM	kawamura	5.00758	Flipped SU(5)	Basiouris			
7144	Triplet H	Fileviez						
			783	DM	Wang			

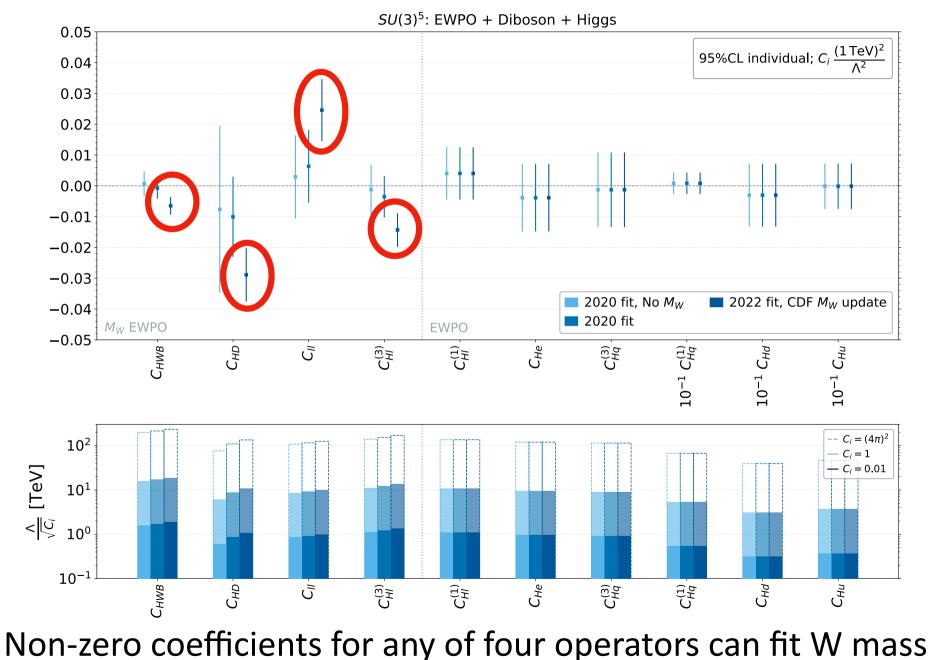
CDF Measurement of m_W

compared with other measurements

SMEFT Operators that can Contribute to W Mass

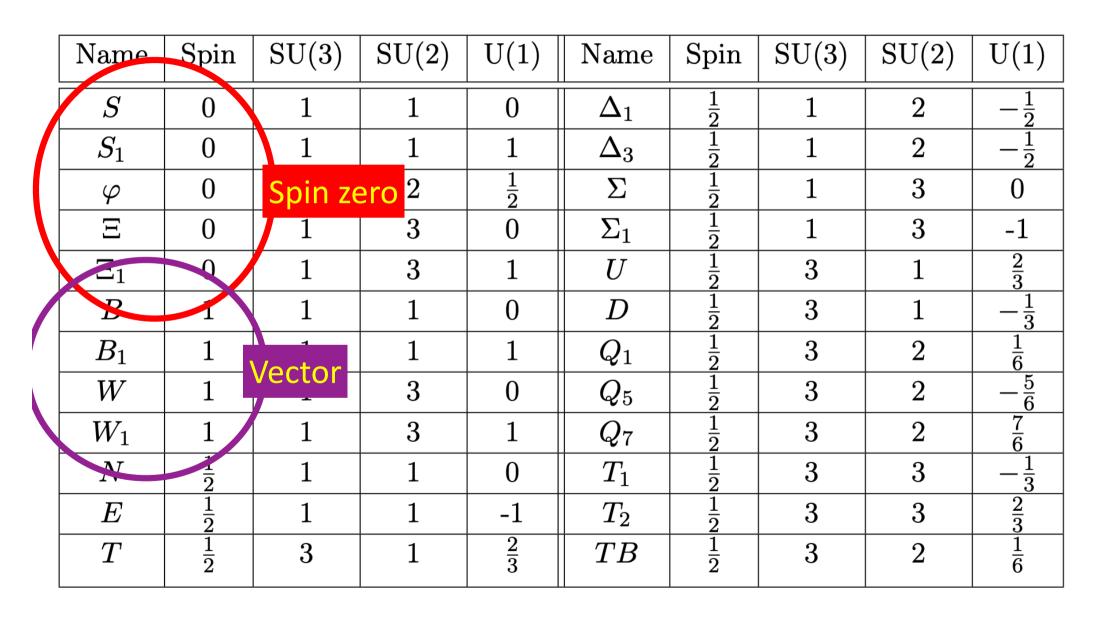
Relevant SMEFT operators

$$\mathcal{O}_{HWB} \equiv H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}, \quad \mathcal{O}_{HD} \equiv \left(H^{\dagger} D^{\mu} H\right)^{\star} \left(H^{\dagger} D_{\mu} H\right)$$
$$\mathcal{O}_{\ell\ell} \equiv \left(\bar{\ell}_{p} \gamma_{\mu} \ell_{r}\right) \left(\bar{\ell}_{s} \gamma^{\mu} \ell_{t}\right), \quad \mathcal{O}_{H\ell}^{(3)} \equiv \left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H\right) \left(\bar{\ell}_{p} \tau^{I} \gamma^{\mu} \ell_{r}\right)$$


• Contributions to W mass

$$\frac{\delta m_W^2}{m_W^2} = -\frac{\sin 2\theta_w}{\cos 2\theta_w} \frac{v^2}{4\Lambda^2} \left(\frac{\cos \theta_w}{\sin \theta_w} C_{HD} + \frac{\sin \theta_w}{\cos \theta_w} \left(4C_{Hl}^{(3)} - 2C_{ll} \right) + 4C_{HWB} \right)$$

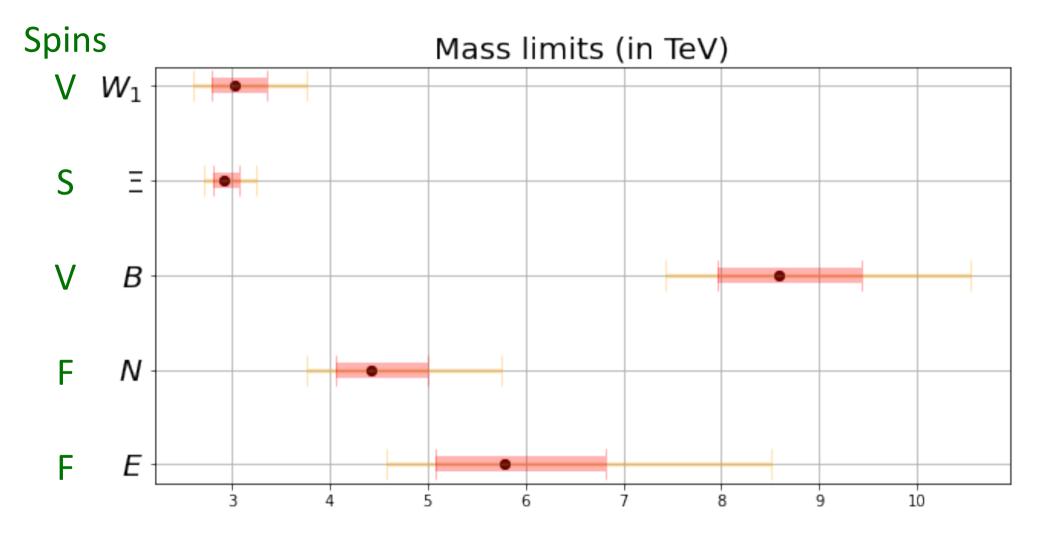
• Contributions to S and T oblique parameters


$$\frac{v^2}{\Lambda^2}C_{HWB} = \frac{g_1g_2}{16\pi}S \quad , \quad \frac{v^2}{\Lambda^2}C_{HD} = -\frac{g_1g_2}{2\pi(g_1^2 + g_2^2)}T$$

SMEFT Fit with the Mass of the W Boson

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Single-Field Extensions of the Standard Model

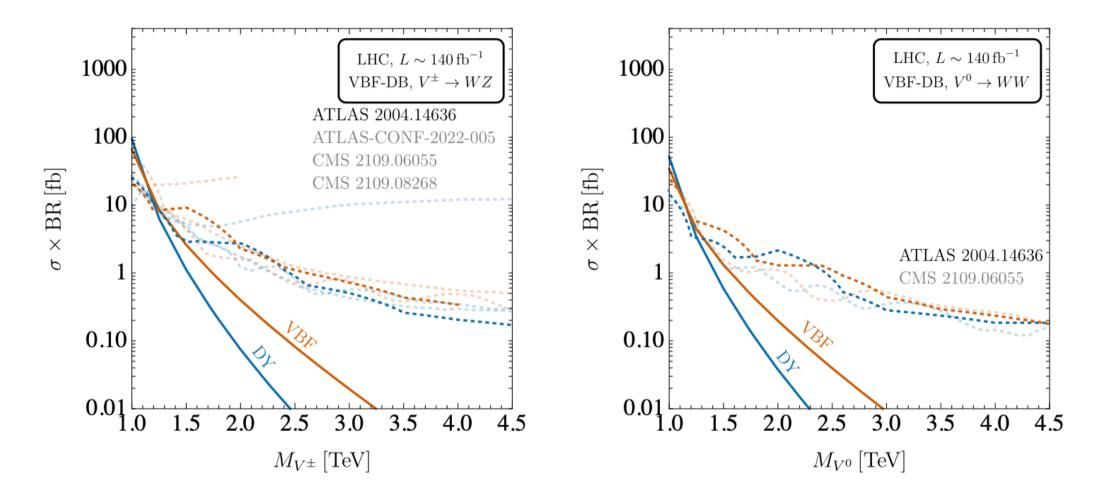


JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Single-Field Models that can Contribute to W Mass

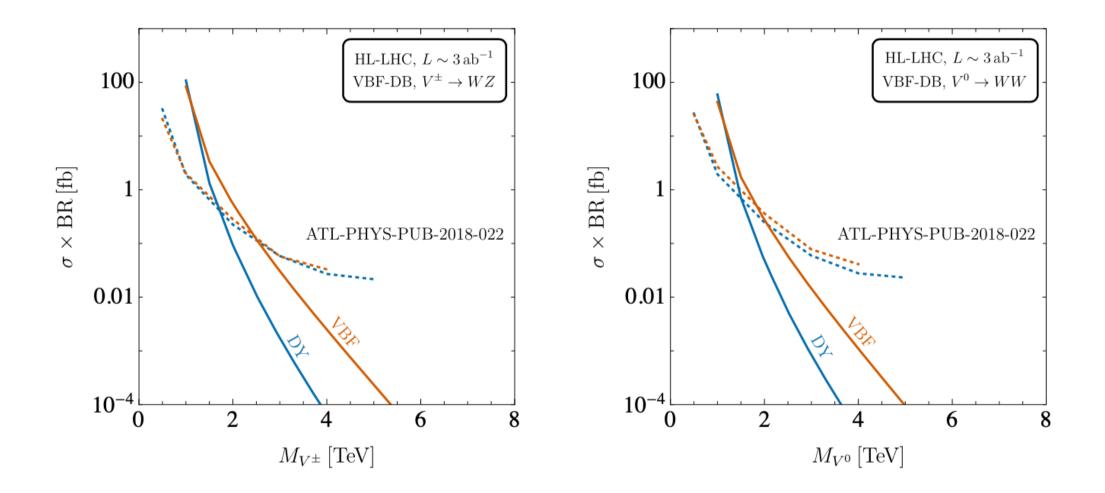
Model	C_{HD}	C_{ll}	$C_{H^{\downarrow}}^{(3)}$	$C_{Hl}^{(1)}$	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
S_1		X							
Σ	Wrong	sign	X	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$		
Σ_1	WICHS		X	$-\frac{3}{16}$			$\frac{y_{\tau}}{8}$		
N			$-\frac{1}{4}$	$\frac{1}{4}$					
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{\tau}}{2}$		
B_1	X					$-\frac{1}{2}$	$-\frac{y_{ au}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
B	-2	Righ	nt sign				$-y_{ au}$	$-y_t$	$-y_b$
Ξ	-2					$\frac{1}{2}$	$y_{ au}$	y_t	y_b
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
W						$-\frac{1}{2}$	$-y_{ au}$	$-y_t$	$-y_b$
	O	perato	rs						
	contrik	outing	to m _w	Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.0526					

Models Fitting the Mass of the W Boson


68 and 95% CL ranges of masses assuming unit couplings, mass range proportional to coupling

Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Searching for Models Fitting the Mass of the W Boson


- W: Isotriplet vector boson, mass ~ 3 TeV x coupling, electroweak production, accessible at LHC?
- B: Singlet vector boson, mass ~ 8 TeV x coupling, phenomenology depends on fermion couplings, too heavy for LHC?
- Ξ : Isotriplet scalar boson, mass ~ 3 TeV x coupling, detectable in LHC searches for heavy Higgs bosons?
- N: Isosinglet neutral fermion, mass ~ 4 TeV x coupling, similar to (righthanded) singlet neutrino
- E: Isosinglet charged fermion, mass ~ 6 TeV x coupling, similar to (righthanded) singlet electron

LHC Search for Triplet Vector Boson

Baker, Martonhelyi, Thamm & Torre, arXiv:2207.05091

HL-LHC Search for Triplet Vector Boson

Baker, Martonhelyi, Thamm & Torre, arXiv:2207.05091

Quo Vadis m_W?

- The jury is still out concerning the experimental measurement
 - Tension with SM, previous measurements

"Extraordinary claims require extraordinary evidence"

- Nevertheless, much theoretical speculation (> 90 papers!)
- 4 SMEFT operators can increase m_W
- 3 SMEFT operators generated by single field extensions of the SM at tree level
 - Vector bosons W or B, scalar boson Ξ , fermions N, E
- Prospects for the LHC?

Beyond Dimension-6: Dimension-8 Operators

• Most analyses focus on dimension-6:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

• Dimension-8 contributions scaled by quartic power of new physics scale:

$$\Delta \mathcal{L}(ext{dim-8}) = \sum_{j} rac{ ilde{c}_{j}}{ ilde{\Lambda}^{4}} \mathcal{O}_{j} = \sum_{j} rac{ ext{sign}(ilde{c}_{j})}{ ext{\Lambda}^{4}_{j}} \mathcal{O}_{j}$$

• Study processes without dimension-6 contributions,

e.g., light-by-light scattering, $gg \rightarrow \gamma\gamma, Z\gamma, \ldots$

- Neutral triple-gauge couplings (nTGCs): $\gamma\gamma^*Z$, γZZ^*
- Now also off-shell nTGCs: $Z/\gamma^* \gamma Z^*$

IE, He & Xiao, arXiv:2308.16887

JE, Mavromatos & You, arXiv:1703.08450 JE, Mavromatos, Roloff & You, arXiv:2203.17311 JE & Ge, arXiv:1802.02146 JE, Ge & Ma, arXiv:2112.06729 JE, Ge, He & Xiao, arXiv:1902.06631

JE, He & Xiao, arXiv:2008.04298

JE, He & Xiao, arXiv:2206.11676

Dimension-8 Operators Contributing to On-Shell nTGCs

$$\begin{split} g\mathcal{O}_{G+} &= \widetilde{B}_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} + D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}), \\ g\mathcal{O}_{G-} &= \widetilde{B}_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} - D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}), \\ \mathcal{O}_{\widetilde{B}W} &= \mathrm{i}\,H^{\dagger}\widetilde{B}_{\mu\nu}W^{\mu\rho}\big\{D_{\rho},D^{\nu}\big\}H + \mathrm{h.c.}, \\ \mathcal{O}_{C+} &= \widetilde{B}_{\mu\nu}W^{a\mu\rho}\big[D_{\rho}(\overline{\psi_{L}}T^{a}\gamma^{\nu}\psi_{L}) + D^{\nu}(\overline{\psi_{L}}T^{a}\gamma_{\rho}\psi_{L})\big] \\ \mathcal{O}_{C-} &= \widetilde{B}_{\mu\nu}W^{a\mu\rho}\big[D_{\rho}(\overline{\psi_{L}}T^{a}\gamma^{\nu}\psi_{L}) - D^{\nu}(\overline{\psi_{L}}T^{a}\gamma_{\rho}\psi_{L})\big] \end{split}$$

• $\mathcal{O}_{C+,C-}$ related to $\mathcal{O}_{G+,G-,\tilde{B}W}$ by equations of motion:

$$\begin{split} \mathcal{O}_{C+} &= \mathcal{O}_{G-} - \mathcal{O}_{\widetilde{B}W}, \\ \mathcal{O}_{C-} &= \mathcal{O}_{G+} - \{ i H^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} [D_{\rho}, D^{\nu}] H + i 2 (D_{\rho} H)^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} D^{\nu} H + \text{h.c.} \} \end{split}$$

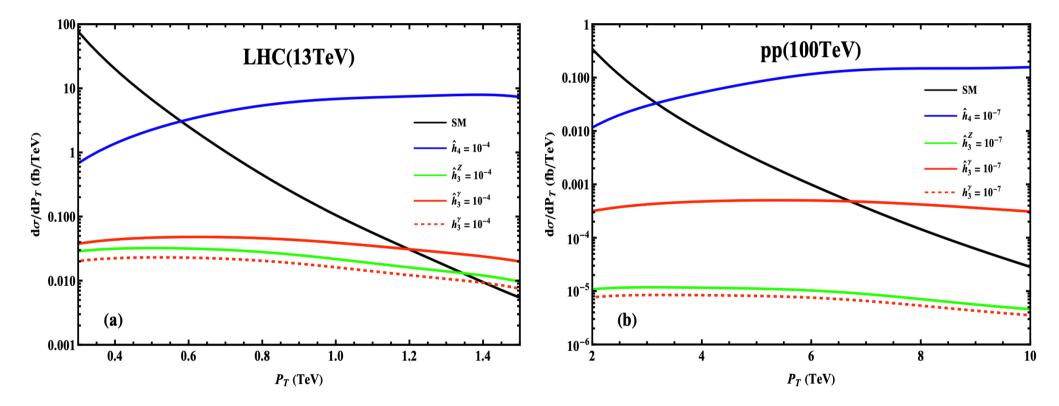
• nTGCs generated:

$$\begin{split} \Gamma_{Z\gamma Z^{*}(G+)}^{\alpha\beta\mu}(q_{1},q_{2},q_{3}) &= -\frac{v(q_{3}^{2}-M_{Z}^{2})}{M_{Z}[\Lambda_{G+}^{4}]} \left(q_{3}^{2} q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + 2q_{2}^{\alpha} q_{3\nu} q_{2\sigma} \epsilon^{\beta\mu\nu\sigma}\right), \\ \Gamma_{Z\gamma\gamma^{*}(G+)}^{\alpha\beta\mu}(q_{1},q_{2},q_{3}) &= -\frac{s_{W} v q_{3}^{2}}{c_{W} M_{Z}[\Lambda_{G+}^{4}]} \left(q_{3}^{2} q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + 2q_{2}^{\alpha} q_{3\nu} q_{2\sigma} \epsilon^{\beta\mu\nu\sigma}\right), \\ \Gamma_{Z\gammaZ^{*}(\widetilde{B}W)}^{\alpha\beta\mu}(q_{1},q_{2},q_{3}) &= -\frac{v M_{Z}(q_{3}^{2}-M_{Z}^{2})}{[\Lambda_{\widetilde{B}W}^{4}]} \epsilon^{\alpha\beta\mu\nu} q_{2\nu}, \\ \Gamma_{Z\gamma\gamma^{*}(G-)}^{\alpha\beta\mu}(q_{1},q_{2},q_{3}) &= -\frac{s_{W} v M_{Z}}{c_{W}[\Lambda_{G-}^{4}]} \epsilon^{\alpha\beta\mu\nu} q_{2\nu} q_{3}^{2}. \end{split}$$

JE, Ge, He & Xiao, arXiv:1902.06631 JE, He & Xiao, arXiv:2008.04298 JE, He & Xiao, arXiv:2206.11676

Dimension-8 Operators Contributing to Off-Shell and CP-violating nTGCs

• Off-shell vertex: $V^* \gamma Z^*$ needed to analyze $(Z^* \rightarrow \overline{\nu}\nu) + \gamma$ final states at pp colliders because no kinematic constraint on $m_{\overline{\nu}\nu}$:


 $CPC: \quad \mathcal{O}_{\widetilde{B}W} = \mathrm{i} H^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H + \mathrm{h.c.},$

Higgs operators:

$$\begin{split} & \text{CPC:} \quad \mathcal{O}_{\widetilde{BW}} = \mathrm{i} H^{\dagger} \big(D_{\sigma} \widetilde{W}_{\mu\nu}^{a} W^{a\mu\sigma} + D_{\sigma} \widetilde{B}_{\mu\nu} B^{\mu\sigma} \big) D^{\nu} H + \mathrm{h.c.}, \\ & \text{CPV:} \quad \widetilde{\mathcal{O}}_{BW} = \mathrm{i} H^{\dagger} B_{\mu\nu} W^{\mu\rho} \big\{ D_{\rho}, D^{\nu} \big\} H + \mathrm{h.c.}, \\ & \text{CPV:} \quad \widetilde{\mathcal{O}}_{WW} = \mathrm{i} H^{\dagger} W_{\mu\nu} W^{\mu\rho} \big\{ D_{\rho}, D^{\nu} \big\} H + \mathrm{h.c.}, \\ & \text{CPV:} \quad \widetilde{\mathcal{O}}_{BB} = \mathrm{i} H^{\dagger} B_{\mu\nu} B^{\mu\rho} \big\{ D_{\rho}, D^{\nu} \big\} H + \mathrm{h.c.}, \end{split}$$

Probing nTGCs with $Z^*(\rightarrow \nu \bar{\nu})\gamma$ Production at Hadron Colliders

• Cannot determine whether Z is on-shell: primary observable is p_T^{γ}

 Sample differential cross-sections for illustrative values of the SU(2)&U(1) form factors rise above Standard Model cross-section for values < unitarity limit
 JE, He & Xiao, arXiv:2308.16887

Combined Sensitivities to SU(2) \otimes U(1)-Invariant Mass Scales

Sensitivities using $Z \rightarrow \ell^+ \ell^-, \bar{\nu} \nu$ decays

CPC and CPV operators

JE, He & Xiao, arXiv:2308.16887

\sqrt{s}	1	$3\mathrm{TeV}$	-	$100\mathrm{TeV}$			
$\mathcal{L}\left(\mathrm{ab}^{-1} ight)$	0.14	0.3	3	3	10	30	
Λ_{G+} (CPC)	3.4	3.6	4.2	23	26	29	
Λ_{G-} (CPC)	1.2	1.3	1.5	7.7	8.5	9.3	
$\Lambda_{\widetilde{B}W}(ext{CPC})$	1.3	1.4	1.6	5.6	6.1	6.6	
$\Lambda_{\widetilde{BW}}(ext{CPC})$	1.5	1.6	1.9	6.4	7.0	7.6	
$\Lambda_{\widetilde{G}+}(\mathrm{CPV})$	2.8	3.0	3.5	20	22	24	
$\Lambda_{\widetilde{G}-}$ (CPV)	1.0	1.1	1.3	6.5	7.2	7.8	
$\Lambda_{WW} (ext{CPV})$	0.96	1.0	1.2	4.0	4.4	4.8	
$\Lambda_{WB} ({ m CPV})$	1.1	1.2	1.4	4.8	5.2	5.7	
$\Lambda_{BB} ({ m CPV})$	1.4	1.5	1.7	5.8	64	7.0	

Quo Vadis SMEFT?

- Powerful framework for global analyses of LHC and other data
- Systematic way to search for BSM physics
- Can be used in principle to identify "interesting" BSM scenarios
- Dimension-6 operators are a first approximation
- Important to check lesser importance of dimension-8, convergence towards ultraviolet-complete model
- Interesting direct windows on dimension-8 operators

Looking Beyond the Standard Model with the SMEFT

"...the direct method may be used...but indirect methods will be needed in order to secure victory...."

"The direct and the indirect lead on to each other in turn. It is like moving in a circle...." Who can exhaust the possibilities of their combination?"

Sun Tzu