

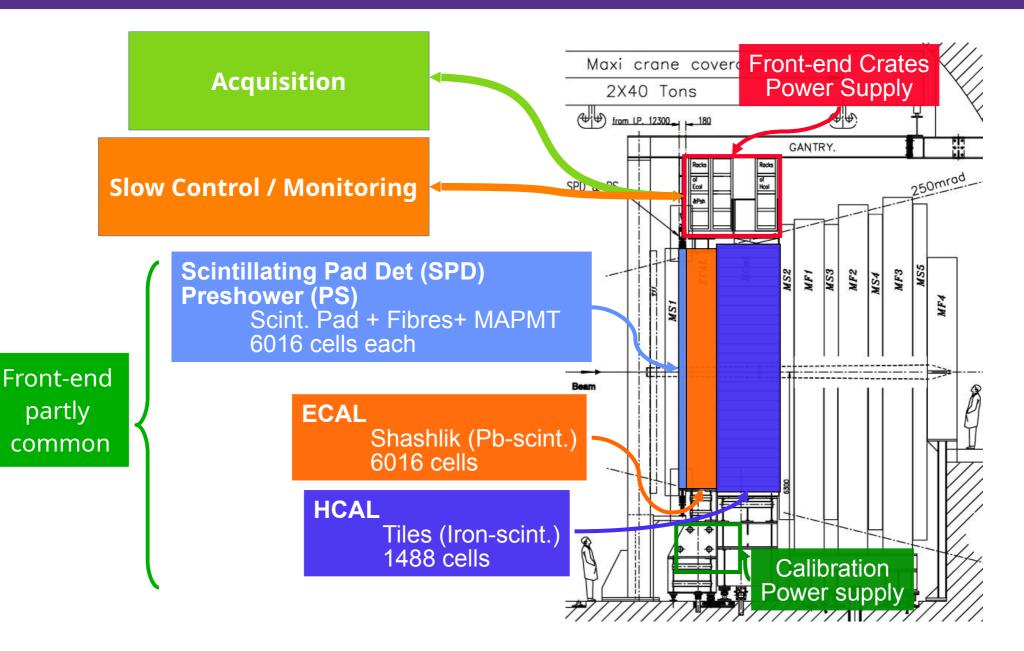
Lessons learnt from the Calorimeter Upgrade I

ECAL U-II Workshop

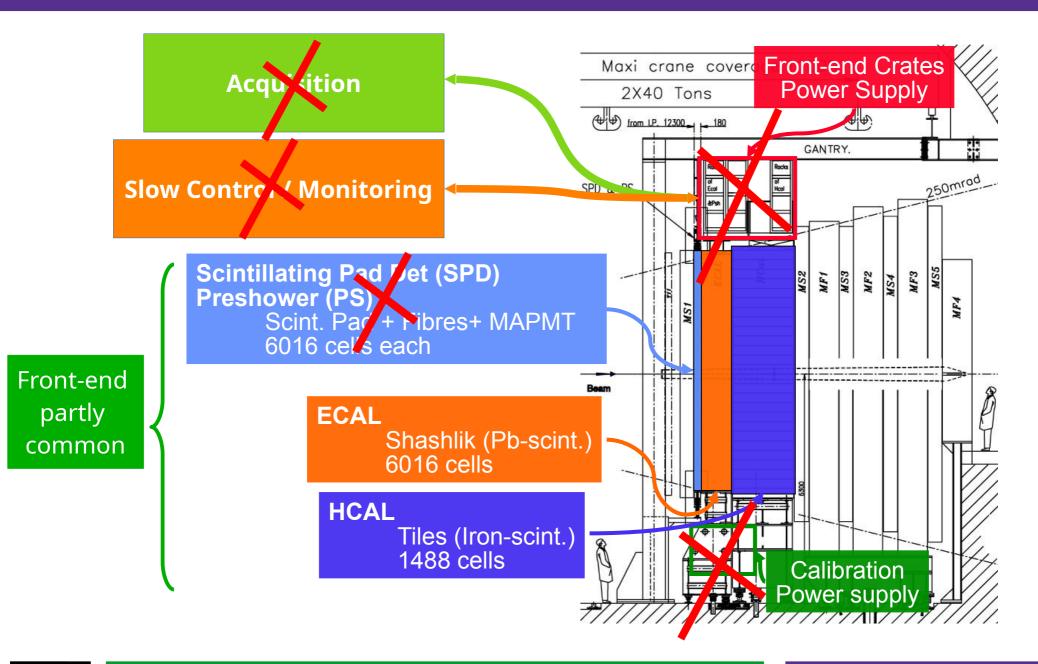
Frédéric Machefert IJCLab (Orsay / CNRS)

Many thanks to those whose contributed to this talk

Monday 12th December 2022


INTRODUCTION

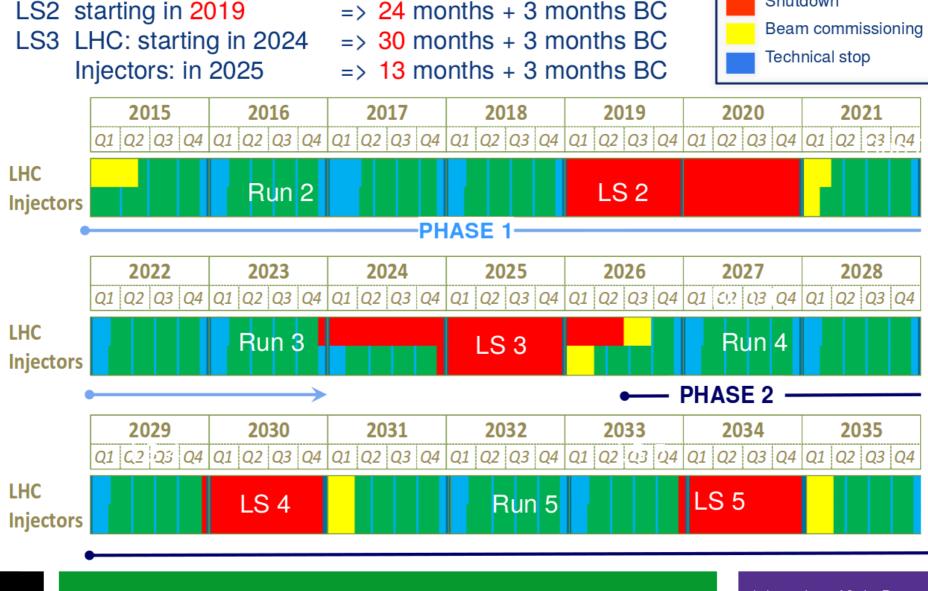
- This presentation is very subjective
 - I tried to get the input of other people contributing to the upgrade I
 - Thanks to them !
 - What I found posi/nega-tive may have been nega/posi-tive for others
- I will try to give my feeling
 - What was good ? What was bad ?
 - What should have we done differently ?
 - What could have been improved ? What was well done ?
 - What have been the obstacles ?


OVERVIEW OF THE CALORIMETER UPGRADE

- New design of the Front-end electronics, the acquisition and the slow control
 - The calorimeter data sent @ 40 MHz to the upgrade-HLT / PC-farm
 - The gain of the cells was changed (HV + analog electronics gain) to improve the physics case
 - All the communications are based on the GBTx system
- The SPD/PS system is removed
 - Not so important after LO disappears
 - Particle identification is affected
 - But easier calibration of the ECAL/better resolution

THE CALORIMETER SYSTEM – RUNS I & II

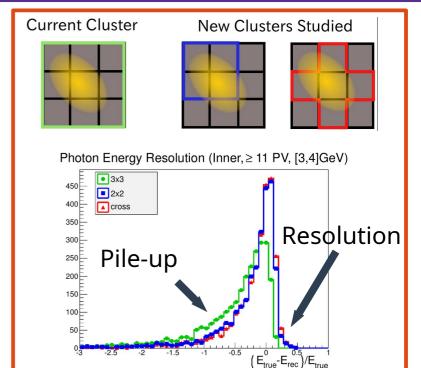
WHAT WAS CHANGED FOR THE UPGRADE

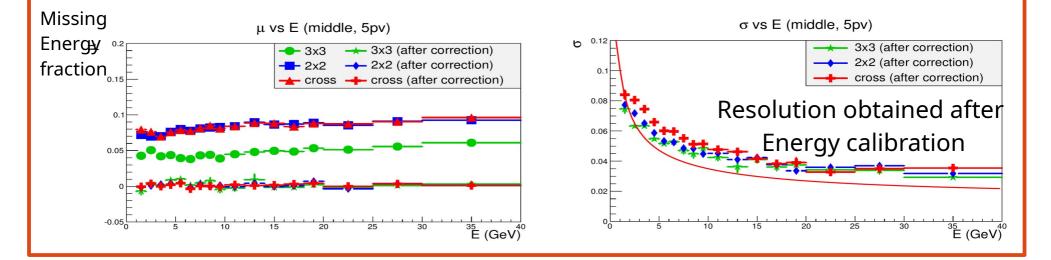

F. Machefert - ECAL U-II Workshop

ORIGIN OF THE PROJECT

- It was important to well define the scope of the project
 - Jacques Lefrançois contributed a lot to the preparation of the project
 - Thanks also to Marie-Noëlle Minard for her strong support from the beginning
- We tried to think early of the details keeping in mind the time allowed
 - Mostly fixed by the schedule of the LHC (which drifted afterwards !)
 - Early, we had a clear idea of the possible financial resources we could get
 - We could not imagine having the budget to replace the modules
 - This clarified early the scope of the project
 - And clarified the human resources needed
 - We looked for external contributors straight away
 - 2 reasons :
 - IN2P3 / IJCLab(LAL) would not have been able to make it alone
 - We benefited a lot from the experience of the other groups
 - We wanted to share the work early and started to discuss with the people we knew to be capable of having a strong impact
 - Not always the people who speak loud but those that are competent
 - Among the contributors to the Runs I & II Calo \rightarrow the **Barcelona group** (electronics of the SPD)
 - Clermont could not work on the project (SciFi)
 - But we benefited a lot from their knowledge of the SPD/PS for the dismantling → their responsibility and they did it perfectly !
 - Annecy was involved In the mechanics from the beginning → essential contribution (movement of the detector)
 - The russian groups had contributed to the HV / Calibration / Monitoring systems
 - Had to be adapted to the new slow control → important contribution from them (ITEP, INR, IHEP) → huge work from Yuri Guz

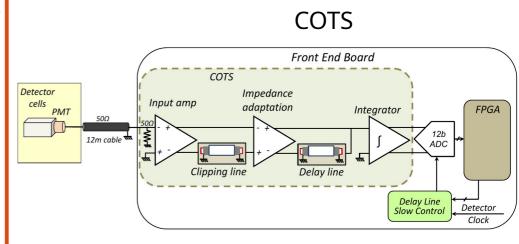
THE LHC SCHEDULE IN 2015...

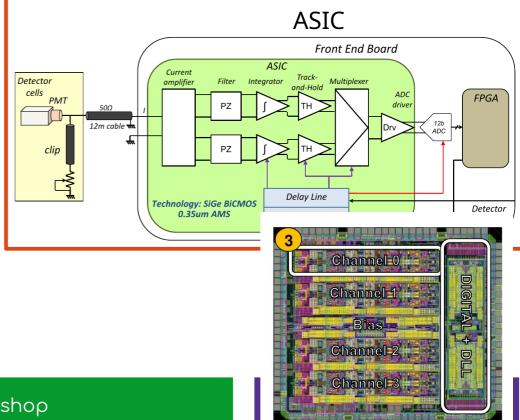

F. Machefert - ECAL U-II Workshop


Monday 12th Dec. 2022

Physics Shutdown

EARLY PERFORMANCE STUDIES


- We studied the performances of the upgrade I detector (A. Vallier's thesis)
 - It was not clear how to cope with the larger occupancy
 - We knew that we would not improve the overall performances
 - We tried to identify the possibilities to get similar performances as for the "original" calo

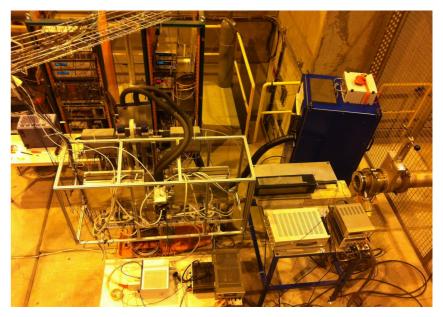


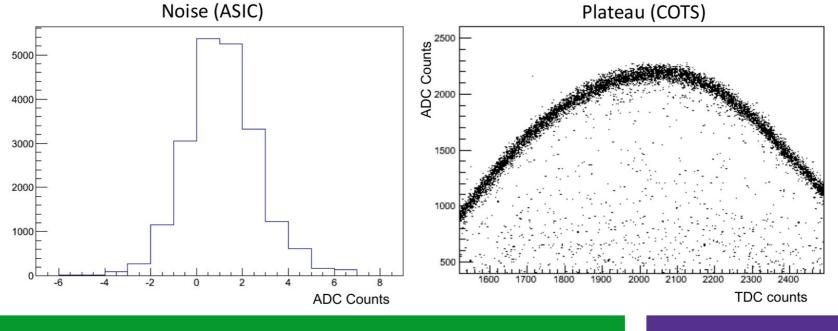
THE FE ELECTRONICS

- We benefited from two parallel designs of the analog electronics by Barcelona
 - The two groups worked together and most people contributed to the two developments
 - We benefited from the collaborations of the two "teams" and the sharing of knowledge
- The final choice was based on the performances first, the cost was NOT the priority
 - The criteria have been clearly defined early in the development of two designs
 - We could decide in 2015 without too much frustration to go for the ASIC
 - ICECAL production on a shared waffer
 - Important reduction of the cost

FE ELECTRONICS

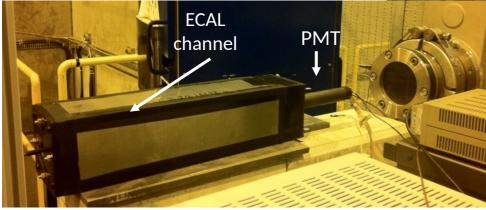
- The first prototype for a FEB was a board that we used essentially to test the analog part, new ideas and components (performances and radiation tolerance) :
 - Could host a mezzanine with any type of analog design
 - Two FPGAs
 - A Socket to host antifuse FPGA
 - A flash based FPGA was soldered

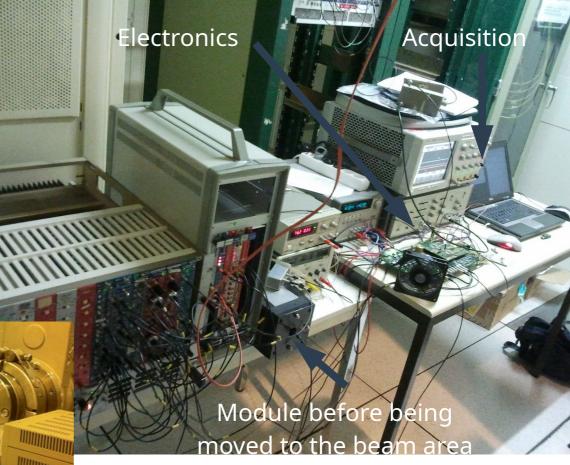

used for the data acquisition


- 12 clocks with adjustable phases feeding the Analog/FPGA
- The board could produce its own clock or use an external one
 - Synchronisation during test beams
- 10 input/output connectors (LEMO)
 - Used as tools to feed or extract user signals
- Communications based on
 - A USB port associated to an acquisition / configuration / monitoring software
 - A SPECS mezzanine (to be used for irradiation tests)
- Two copies of the same test bench in the two labs involved

TEST BEAMS

- We did several test beams where we tried to reproduce the most realistic conditions
 - We used from the beginning the same cables/modules/PMT/CW bases/... as those used in the cavern
 - The pulse shapes were digitised and stored to be generated in the labs in the future

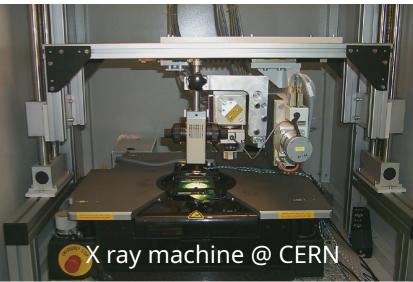




F. Machefert - ECAL U-II Workshop

TEST BEAMS

- We had a "home made" acquisition based on a USB interface and a software designed in our lab
 - The test beams have always been the place for discoveries of "features" of our systems
 - Having our own acquisition permitted to adapt it "on the fly" sometimes



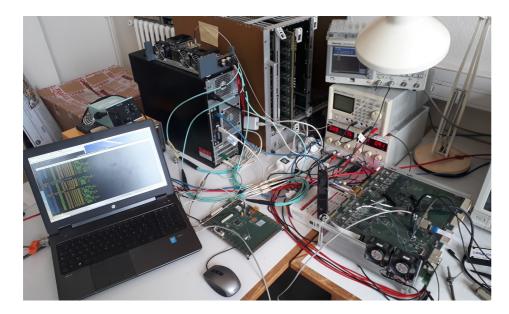
F. Machefert - ECAL U-II Workshop

IRRADIATION TESTS

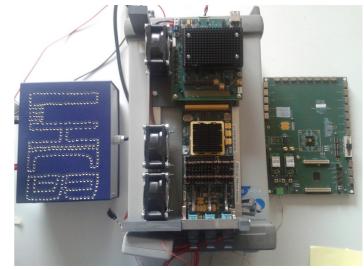
- We had done many tests before the Run I
 - GANIL, CERN, Louvain-La-Neuve, PSI, CPO
 - We re-used components tested for the Run I design
 - But we could not do that for the most critical ones (FPGA, analog chip, ...)
- We organized tests at CERN and Louvain-la-Neuve
 - We benefited a lot from the possibility of "last minute" designs of tools by the technicians of the labs
 - Being able to adapt quickly was a quality

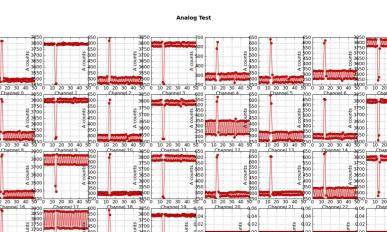
EDU AND JOAN IN THE PROTON IRRADIATION BUNKER

- A key ingredient consisted in having a nice and friendly atmosphere in the group
 - This depends on the people you work with !
 - I don't think that putting pressure on people is the way to go
 - But we could afford it as we had quite a lot of margin in the preparation of the Run III


FIRST FEB PROTOTYPES

- It was important to have nice and efficient tools (not necessarily expensive !) to debug and study the systems under development
 - We benefited from old tools designed for the Run I
 - Handy backplanes, frames to hold the prototypes
 - Don't necessarily dump old things

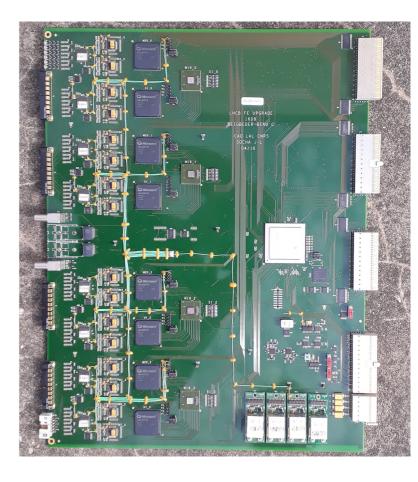



F. Machefert - ECAL U-II Workshop

ACQUISITIONS

- We had our own acquisition based on a USB port and some C++/python programs
- We received a MINIDAQ early
 - But not ready yet / in heavy development
 - not easy to use
 - We needed a "stable" acquisition while the optical link acquisition was still under development → USB
 - What do you do when you have a failure of the optical part ?

F. Machefert - ECAL U-II Workshop


SOFTWARE FOR THE DETECTOR

- We had the chance of having from the beginning computing engineers interested in detector design and detector engineers interested by the software
 - Could fill the gap between the software and the hardware
 - Helped a lot in every day debugging of the hardware

\$			MiniDAQ: TOP (System1	- LAL_MiniDAQ2; #1)		+ _ ×	@		HC1_FEB5:	OP (System1 - LAL_MiniDAQ2; #1)	1		0 =
LHCb	System	State				Mon 03-Feb-2020 16:57:27	IHCh	Device	State		Mo	on 03-Feb-2020	0 16:59:25
<i>LHCD</i> THCD	MiniDAQ	PAUSED	A 8 -				THCD	HC1_FEB5	RUNNING	▲ ∨ -			
Sub-S	« LHCD	DAQ: TOP (Systs System DAQ	EHCD	LAL0: TOP (Sys	item1 - LAL_MiniDAQ2; State	Mon 03-Feb-2020 16:57:28		AL System1:HC1 FEB5	Recipe InitGB	fx v Apply DEFAU	LT Save Update		
TF	1		гнср	LAL0	RUNNING -			Derandomizer state		Reset			
MiniDAQ	Sub-System	State	Sub-System	State				Front-End Sequencer		Global ALL - ICEC	AL ALL Y FE PGA		
	TELL40	RUNNING ~	HC1_3CU	RUNNING -	1							5	
	LALO	RUNNING -	HC1_FEB0	NOT_READY -	×		Г	FEB Identification	Sequencer Configurat		GBTx Clock Phase		
			HC1_FEB1	NOT_READY -	×			Crate	Enable BXID reset	Output Eport Trig Latency Clock	land la		
			HC1_FEB2		×			Slot	Enable sync	0 0	Gbt0 ChA 1 23		
			HC1 FEB3		×			Number	OFF • ON	Sync pattern CCC	Gbt0 ChB 1 23 Gbt1 ChA 1 23		
			HC1_FEB4		×			Number	GlobalPMEnable	BXID offset 3320 \$	Gbt1 ChB 1 23	8	
			HC1_FEB5	RUNNING -					OFF ON		Gbt2 ChA 1 23 Gbt2 ChB 1 23		
	Messages		HC1_FEB6		×		L		StopSyncLoop NO • YES	GBT Mode Normal 💌	Gbt3 ChA 1 23	8	
			HC1_FEB7		×				StopInjLoop	Apply 🔵	Gbt3 ChB 1 23	Apply	
			HC1_FEB8		×			Front-End Configuration	NO • YES				
			HC1_FEB9	RUNNING						- Subtraction	RAM		
			HC1_FEB10		×			80MhzClkEport		Disable Subtraction	Clock		
					×			 ClockStrength DataPath 		OFF • ON	O L0		
			HC1_FEB11 HC1 FEB12		×			DIEport			ChannelB		
				-	×			😑 EnableEport		Old Subtraction OFF • ON			
		- 9	HC1_FEB13		×			 TermEport TrackMode 			RAM Loop Enabled		
		G	HC1_FEB14					Phase Group 0-3 3-7		0 🗢	Test Length 50		
			HC1_FEB15	NOT_READY *	×			Phase Group 4					
		_ S	Messages					GbtStatus					
		0				Close				Apply] •		
				art step: 1	Apply	FW Versions							

MARKETS

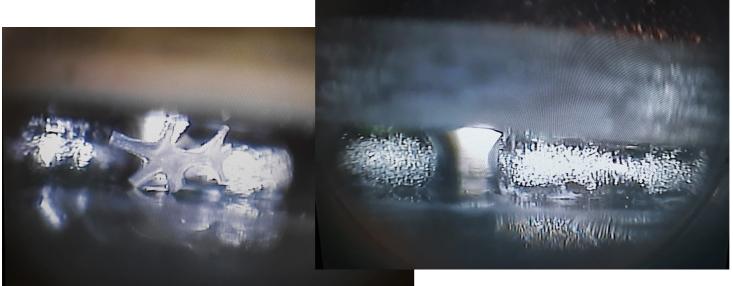
- 2 big markets for the upgrade
 - FPGA (CERN)
 - The FEBs (CNRS)
 - Could avoid market for the 3CU
- FPGA
 - No choice in the components
 - One company... but several distributors
 - SciFi had a (very) bad experience, we (CERN) benefited a lot from their difficulties
- Concerning the FEB
 - 5 companies responded to the market survey
 - We had worked with one of them \rightarrow made our first proto, our preference
 - One company was very aggressive in term of cost and schedule
 - We can imagine that the one we had "choosen" thought CNRS would accept an important overcost
 - Tried to reduce to the minimum the impact of the cost on the choice of company, but this was not sufficient
 - No possibility to visit or contact any company after the market was launched and until it was closed !
 - Our visit of the "winner" increased our worries

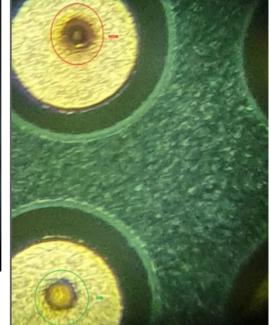
MARKETS

- At the end of the first visit, they called a taxi to take us back to the airport... a Maserati
 - First time I seat in such a car
 - This was a bad sign : be careful if this happens to you
- A dark cloud appeared when they presented the detailed schedule of the production a couple of months later
 - Incompatible with the LHC schedule
 - In complete violation with the contract they had just signed !
 - We took a bus to go back to the airport
- We had to keep the dialogue without allowing any drift of the schedule
 - Conflictual situation and meetings every one/two week(s) until the production ended
 - We had to follow the production and watch out carefully for its quality
- We could avoid launching a market for the 3CU...
- Having some market experts nearby is a clear asset

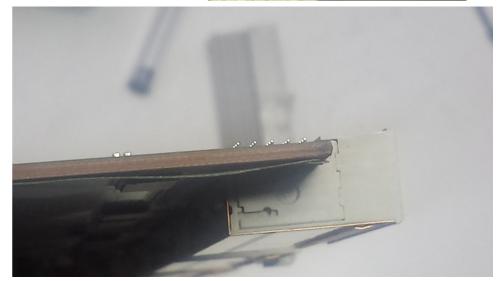
Monday 12th Dec. 2022

F. Machefert - ECAL U-II Workshop

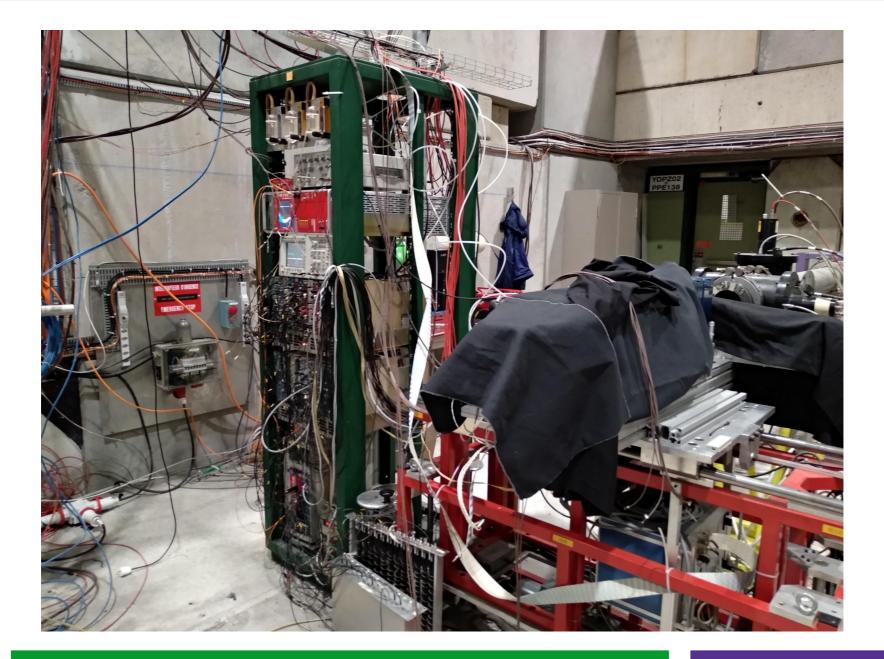

REVIEWS


- The CERN reviews (EDR, PRR, etc...) have been very beneficial to the projet
 - We closely followed the advices and comments of the referees
 - Not following some remarks would have clearly led to serious difficulties
 - We have always been impressed by the competence of the reviewers
- However, we have been asked to participate to other reviews (not @CERN)
 - Those reviews did not aim at improving the project
 - No experts in the panels \rightarrow would have been a waste of time
 - The aim was to give some activity to the administration \rightarrow deny if you can !
- We did not document the project enough and regularly
 - We had good intentions, but by lack of time and laziness, we did not follow them
 - We clearly pay that now and recovering from this situation is painful

PRODUCTION

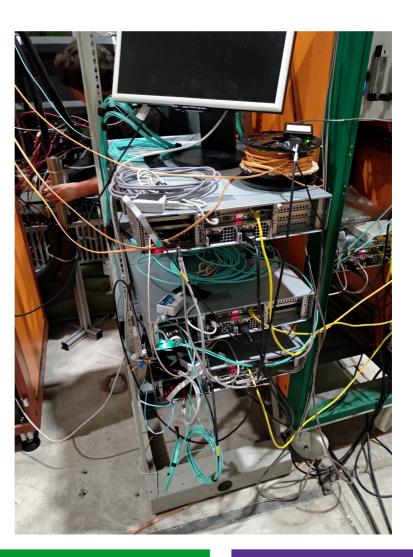

- Should we have produced with the company that made our first prototypes, we would have produced 16 + 280 boards
- We asked for 2 + 16 + 280 boards
 - 2 extra boards requested ASAP to check the competence of the new company
- The pre-production 16 boards (a crate) has been crucial
 - Discovery of a problem affecting ~13% of our optical light emitters
 - Could not be seen with a prototype or 2 boards
- For the Run I & II we had only 16 spares (~5%)
 - This was too few. Moreover, some boards could not be debugged after production → we started the Run I with ~ 12 spare FEB
- For the Run III we decided to make 32 spare boards (~10%)
 - It was a good idea : we could give a fraction of our boards for Plume
- We missed the *electronics meetings at CERN* that gathered ALL the sub-detectors during the Run I preparation (Jorgen Christianssen)

PRODUCTION PROBLEMS



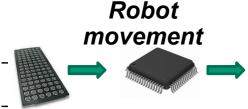
- We had some problems
 - Oxydation on the contacts,
 - Layers of boards not well glued,
 - Bad soldering, ...
- We started with a comfortable margin, we finished just on time !

TEST BEAM WITH THE FINAL DESIGN



F. Machefert - ECAL U-II Workshop

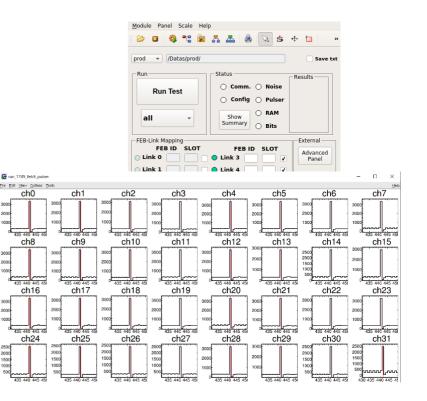
TEST BEAM WITH THE FINAL DESIGN


- ... a realistic acquisition (Minidaq3) and the online experts (big thanks !)
- Nothing would have replaced such a test !

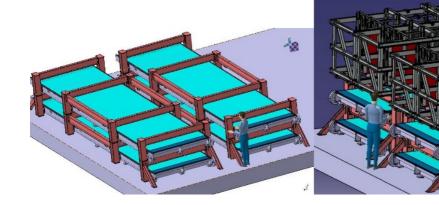
TEST OF THE PRODUCTION

• Barcelona fully automatized the test procedure of the more than 3000 ICECAL chips




Robot

movement



- The efficiency of the software tools has been important to speed up the validation of the production (~300 complex board to test)
- Contributions of the members of the groups for the test
- The organisation was such that from the early development to the end of the projects, we had physicists and engineers working together in the lab

DISMANTLING OF THE SPD / PS

- The dismantling of the SPD PS has been a heavy task
- Require human resources from several groups
 - It was important to have people from CERN / the pit and people knowing perfectly the detectors and how they had been built more than 10 years earlier
- Several tools used for the construction have been re-used / fixed / adapted / copied / developed
 - It was a good idea to keep the old tools !
- A precise schedule had been prepared
 - A delay may shift the activities of other teams
 - Dismantling was followed closely by the installation

26/37

F. Machefert - ECAL U-II Workshop

TESTS OF THE TOOLS

• Tools tested with a 3t load

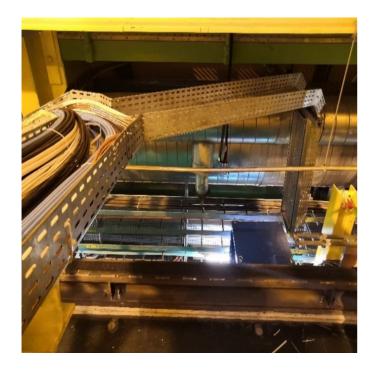
F. Machefert - ECAL U-II Workshop

DISMANTLING

28/37

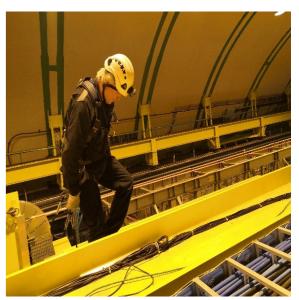
F. Machefert - ECAL U-II Workshop

DISMANTLING



29/37

F. Machefert - ECAL U-II Workshop


CABLES AND OPTICAL LINKS

• This is probably the only field were the activity was properly documented... thanks to the CERN teams that were in charge of the installation

30/37

F. Machefert - ECAL U-II Workshop

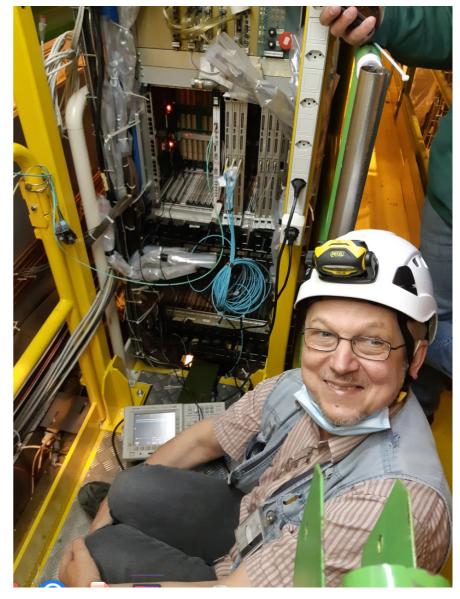
INSTALLATION OF THE ELECTRONICS

- It was important to put labels on the hardware
 - And it is even nicer to have labels that stay glued on the device and that you don't find on the floor after a while !

31/37

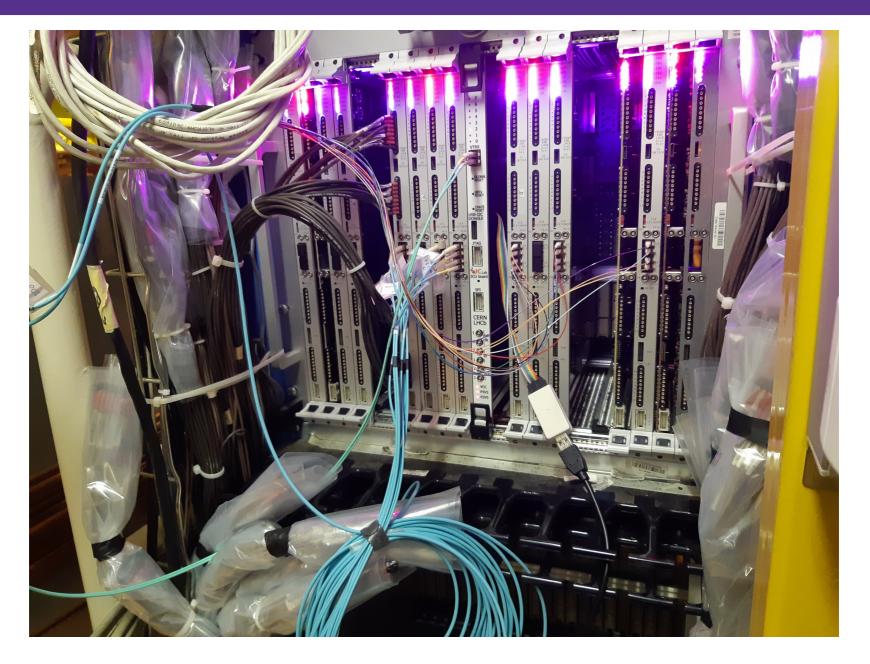
F. Machefert - ECAL U-II Workshop

INSTALLATION OF THE ELECTRONICS

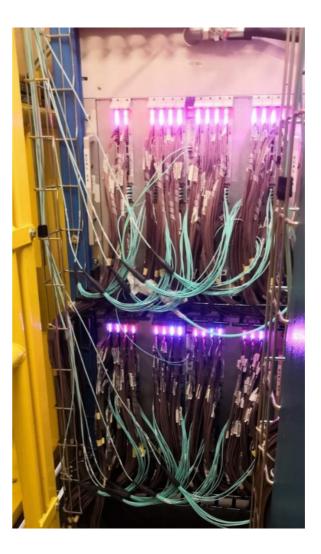

32/37

F. Machefert - ECAL U-II Workshop

INSTALLATION OF THE ELECTRONICS


... Cabling could start

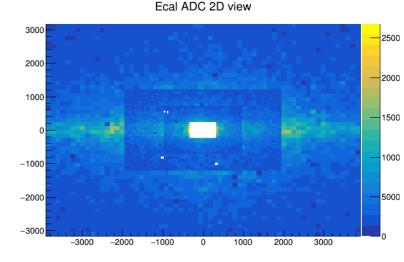
F. Machefert - ECAL U-II Workshop


EVERYTHING READY IN 2021

F. Machefert - ECAL U-II Workshop

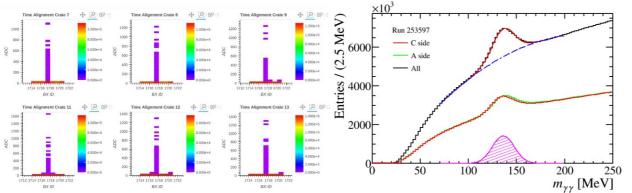
AND COMMISSIONING STARTS

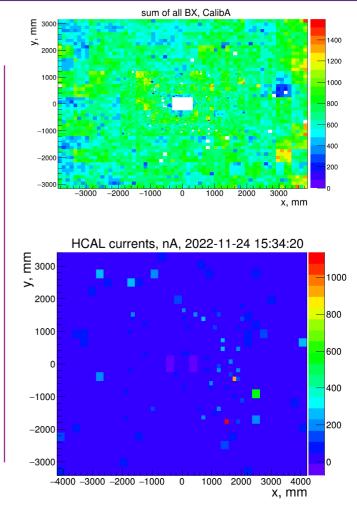
F. Machefert - ECAL U-II Workshop


COMMISSIONING

- With the commissioning the need for software experts (~young people) became more important
 - It is important to involve young people early in the project
 - We benefit from the methods developped for the Runs I & II
 - Still a huge work to adapt to the new systems
 - new acquisition, new framework, new constraints, ...
 - rewriting everything from scratch could have been more efficient
 - It is important to start the software development early
 - The reconstruction, simulation (DD4HEP) developments started late
 - Thank to some extra-contribution we could catch up
 - Automatic test of the code is crucial

• The project relies on a VERY SMALL number of people


- Not many exchanges between the upgrade I and upgrade II communities
- LHCb Upgrade II will depend on the success of the Upgrade I



COMMISSIONING

- We rely on a small group of "old" experts for the maintenance
 - PMT / CW replacement, fixing the FEBs
- Younger people are essentially involved in detector tuning, analyzing the data

- There are doing the most important work now
- This dichotomy reflects probably our unability to involve new / young people early in the design of the detector and in the "hardware" activities
 - The control room/pit are the best places to learn how the detector works
 - We suffer from a distance between the people who made the detectors and the people who look at the data produced
 - We do not benefit enough from the experience of those who were analyzing data a couple of years ago !
- My feeling is that this is not true ONLY for the Calorimeter system of LHCb
 - I don't think this was so true for the preparation of the Run I

