ECAL consolidation and upgrade plans

ECAL Upgrade II workshop, Orsay, 12-14 Dec 2022

Performance of current ECAL

<u>**Current ECAL</u>** optimized for π^0 and γ reconstruction in the few to 100 GeV energy range at $L = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ </u>

- ➤ 3312 modules and 6016 channels
- radiation resistant up to 40 kGy
- three sections (Inner, Middle, Outer) of cell size 4x4, 6x6, 12x12 cm²
- $\succ \sigma(E)/E \sim 10\%/\sqrt{E \oplus 1\%}$

ECAL UII workshop Orsay, 12-14 Dec 2022

Requirements for ECAL under upgrade II conditions

Requirements for the Upgrade II:

- \rightarrow operation up to L = 1.5 x 10³⁴ cm⁻²s⁻¹ with Run 1&2 detector performance (assumption in physics TDR)
- Keep current energy resolution
- Sustain radiation doses up to 1 MGy and $\leq 6.10^{15}$ cm⁻² for 1MeV neq/cm² at 300 fb⁻¹
- Mitigate high occupancies and pile-up
 - ✓ Reduce occupancy by increasing granularity (down to 1.5x1.5 cm²) and by following rhombic radiation map
 - ✓ Mitigate pile-up by introducing timing capabilities with O(10) ps precision
 - \checkmark Improve reconstruction & PID by introducing Z-segmentation (double-sided R/O)
- \blacktriangleright Respect outer dimensions of the current modules: 12 x12 cm²

SPACAL

Baseline technologies for ECAL Upgrade II

see Philipp's talk (next)

Upgraded Shashlik technology for outer region:

- > Timing with <u>new WLS fibres & long. segmentation</u>
 - \checkmark Cost optimisation by refurbishing ≈ 2000 existing modules for improved timing
 - ✓ Adapt to the required cell sizes by adding \approx 1300 new modules
 - \checkmark 4x4, 6x6,12x12 cm² cell sizes (segmentation & double side readout)

New SpaCal technology for inner region:

- 1 MGy \rightarrow 200 kGy region with scintillating crystal fibres and W-absorber
 - ✓ Development of radiation-hard scintillating crystals
 - \checkmark 1.5x1.5 cm² cell size with Z-segmentation & double-side readout
- > 200 kGy \rightarrow 40 kGy region with scintillating <u>plastic fibres</u> and <u>Pb-absorber</u> ✓ Need for radiation-tolerant organic scintillators

 - \checkmark 3x3 cm² cell size with Z-segmentation & double-side readout

LS3 consolidation: W absorber for innermost modules equipped with scintillating plastic fibres for 2x2 cm² cell size and single-side R/O

All module sizes: 12 x12 cm²

SPACAL

Cell size: Modules:

 $1.5 \text{ x} 1.5 \text{ cm}^2$ *new* W-SPACAL for extreme conditions of up to 1 MGy 32

- liaht auide РМТ front back Beam direction
- $3 \times 3 \text{ cm}^2$ *new* Pb-SPACAL with "moderate" radiation requirements of up to $\approx 200 \text{ kGy}$ 144

for ECAL Upgrade II

- $4 x 4 cm^{2}$ *new* Shashlik + 176 *refurbished* existing Shashlik with long. segmentation 272
 - new Shashlik + 448 refurbished existing Shashlik with long. segmentation 896
- 1344 *refurbished* Shashlik modules with long. segmentation $12 \text{ x} 12 \text{ cm}^2$

\blacktriangleright a total of 15'104 cells

Number of channels:

 $6 \times 6 \text{ cm}^2$

- Baseline: SPCAL & Shashlik **double**-sided R/O
 - \geq 30'208 channels
- Downscope: SPCAL double-sided R/O, Shashlik single-sided R/O \checkmark
 - \geq 19'456 channels
- ✤ <u>Current ECAL</u>: 6064 cells with 6016 channels readout

Particle flux in Upgrade II conditions

Iongitudinal segmentation can improve timing as well as shower separation

ECAL consolidation during LS3

ECAL cell efficiency after 2025 (48 fb-1)

Particle flux at L = 2×10^{33} cm⁻²s⁻¹

0.1

0.08

0.06

0.04

0.02

200

300

Philipp Roloff

X [cm]

Cell size

Baseline LS3 configuration

<u>Cell size:</u>	Modules:
2 x 2 cm ²	32 <i>new</i> SpaCal-W modules <u>with polystyrene fibers</u>
$3 \times 3 \text{ cm}^2$	144 <i>new</i> SpaCal-Pb modules (identical to UII)
$4 x 4 cm^2$	176 existing Shashlik modules
$6 \times 6 \text{ cm}^2$	448 existing Shashlik modules
$12 \text{ x} 12 \text{ cm}^2$	2512 existing Shashlik modules

everything in single sided R/O (no longitudinal segmentation)

Particle flux at $L = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

LS3 configuration:

- ✓ 9'344 cells/channels single sided R/O
- \checkmark rhombic shape

✓ tilted SPCAL
$$(3^{\circ}+3^{\circ})$$

✓ ps-timing for new SPACAL modules
→ 3'456 new electronic channels

Baseline ECAL upgrade strategy (as agreed in FTDR)

																	(Sched	le as of Jan 2022)		Ν	
	2017	2018	2019	2020	2021	202	2 2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	20	$\left \right\rangle$
																					\mathcal{V}
CERN	Run 2			LS2			Run 3			LS3			Run 4				LS4		Run 5 - 6		
	LHC								13 Te\				14 TeV			HL	LHC				
		0.1				_	0							0	0.1					24 0 1	
HCp	4×10 ³² cm ⁻² s ⁻¹ 9 fb ⁻¹ Upgrade I				2×10 ³³ cm ⁻² s ⁻¹ 23 fb ⁻¹			LS3 Enhancements				2×10 ³³ 50	cm ⁻² s ⁻¹ fb ⁻¹		Upgr	ade II	1.5×10 ³⁴ cm ⁻² s ⁻¹ 300 fb ⁻¹				

After LS2 in 2022-2025:

- \checkmark Run with unmodified ECAL shashlik modules at L=2x10³³ cm⁻²s⁻¹ (new 40 MHz R/O) LS3 consolidation in 2026/28:
- \checkmark Introduce single section rad. tolerant SPACAL (2x2 & 3x3 cm² cells) in inner regions and rebuilt ECAL in **rhombic shape** to improve performance at $L=2(4)x10^{33}$ cm⁻²s⁻¹
- > 32 SPACAL-W & 144 SPACAL-Pb modules compliant with Upgrade II conditions
- Include timing information with single sided R/O to inner regions

LS4 Upgrade II in 2033/34:

- \checkmark Introduce **double section rad. hard** SPACAL (1.5x1.5 & 3x3 cm² cells) and improve timing of Shashlik modules for a luminosity of up to L=15x10³³ cm⁻²s⁻¹
- Include timing information with double sided R/O to full ECAL to mitigate pile-up

Planning towards ECAL consolidation in LS3 and upgrade II in LS4

Proposal of planning and scheduling:

- ✓ Light-weight **TDR for LS3 consolidation**:
 - Proposal: submit TDR to LHCC by September 2023 (combined PID TDR with RICH)
 - Physics performance improvement as compared to run 3 configuration
 - > Demonstration of required technological performance (R&D and prototyping) for proposed consolidation
 - ➢ Infrastructure requirements for LS3 and LS4 (new platform)
 - Institute responsibilities
 - Planning, schedule (personnel loaded) and cost
- ✓ Light-weight LHCb-internal review by U2PG on LS3 consolidation :
 - Proposal: spring 2023 (followed by official agreement by Technical Board for proceeding with TDR)
 - Main reviewers: Hassan Jawahery, Guy Wilkinson (+ ad-hoc experts)
 - Should include: physics opportunities, technology readiness, schedule, availability of person-power and resources

✓ Scoping Document:

- Sometime in 2024 (exact date to be decided by the collaboration, see talk by Matteo P.)
- Comparison of physics performance for key channels between baseline and descoped option
- Realistic estimate of cost for baseline option and descoped option

Scheduling of ECAL consolidation in LS3 and upgrade II in LS4

																			(Sched	le as of	Ν	
	2017	2018	2019	2020	2021	202	2 2	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	20	[]
																						\mathcal{V}
CERN	Run 2		LS2				Run 3				LS3				Ru	n 4		LS4		Run 5 - 6		l
	LHC							13 Te\						14 TeV			HL	LHC				
mak	4×1032 om 2 or 1							2×1033 cm-2 c-1							2×10 ³³	cm-2 s-1				1.5×10	1 ³⁴ cm ⁻² e ⁻¹	
HCP	9 fb ⁻¹ Upgrade I				23 fb ⁻¹			LS3 Enhancements				50	fb ⁻¹		Upgr	ade II	30	00 fb ⁻¹				

Summary of proposed schedule:

- ✓ April/May 2023: Light-weight internal U2PG review to approve ECAL LS3 consolidation (internal to LHCb Collaboration)
- ✓ September 2023: Light-weight PID TDR to LHCC for LS3 consolidation (ECAL & RICH)
- ✓ 2024: Scoping Document for LHCb Upgrade phase IIb (including ECAL)
- ✓ 2025-2027: production of 176 SPACAL modules, 3'500 new electronics channels and PCIe400
- ✓ 2026-2028: infrastructure modification (platform) and ECAL re-built (new modules, rhombic shape)
- ✓ 2026: TDR for ECAL Upgrade phase IIb in LS4
- ✓ 2028-2032: production/refurbishing shashlik modules, production of GAGG-SPACAL, introducing double sided R/O
- ✓ 2033-2034: ECAL re-built by adding new modules during LS4

10

Summary & Conclusion

- Aim to reach Run 1&2 performance with rad, hard technologies, increased granularity, \succ long. segmentation and ps-timing performance
- Baseline technologies and configurations for LS3 and LS4 defined in FTDR
- LS3 baseline with additional 3500 channels to current ECAL and rhombic shape
- LS4 baseline with 30k R/O channels, descoped version with 20k R/O channels
- Light-weight U2PG Review and TDR for LS3 consolidation in Q1&Q3 2023
- Descoping document in 2024 and start of production for LS3 in 2025
- Tight schedule for LS3 infrastructure consolidation and ECAL re-built during LS3
- ECAL Upgrade II TDR in 2026, followed by serial production
- Optimize detailed layout \rightarrow complete physics studies with different configurations
- Progress in determining final technologies \rightarrow continue R&D in all areas (detector, electronics, R/O, ...)
- Start realistic planning \rightarrow define institutes responsibilities, schedule, cost, financial and personnel resources

→ New groups joining LS3 consolidation and LS4 upgrade II activities are most welcome (needed)!

