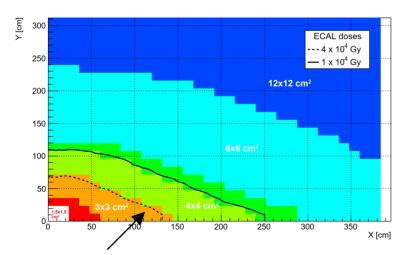

Status of baseline ECAL module design and additional options

Philipp Roloff (CERN) on behalf of the LHCb ECAL Upgrade II R&D group

ECAL Upgrade II Workshop Orsay, 12/12/2022


Reminder: Baseline configuration for Upgrade II

5 ECAL regions matching the radiation maps:

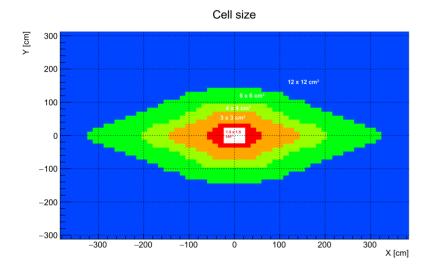
 $\begin{array}{c} \underline{\text{Cell size:}} \\ 1.5 \text{ x } 1.5 \text{ cm}^2 \\ 3 \text{ x } 3 \text{ cm}^2 \\ 4 \text{ x } 4 \text{ cm}^2 \\ 6 \text{ x } 6 \text{ cm}^2 \\ 12 \text{ x } 12 \text{ cm}^2 \end{array}$

Modules:

32 *new* modules for extreme conditions of up to 1 MGy 144 *new* modules with "moderate" radiation requirements of up to ≈ 200 kGy 272 *new* modules + 176 refurbished existing modules (add long. segmentation?) 896 rebuilt + 448 refurbished existing modules (add long. segmentation?) 1'344 refurbished existing modules (add long. segmentation?)

Radiation limit of current Shashlik technology

Number of channels:


<u>Current ECAL:</u> 6'064 cells (6'016 channels read) <u>Full double-sided readout (long. segmentation):</u> 30'208 channels

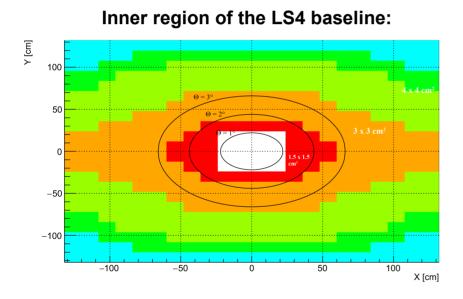
The SpaCal modules need to be tiled to meet the energy resolution target

<u>Downscoped variant:</u> double-sided readout only for the SpaCal modules

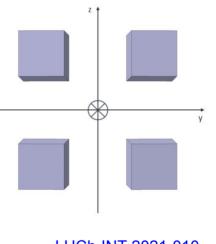
Status of baseline ECAL module design and additional options

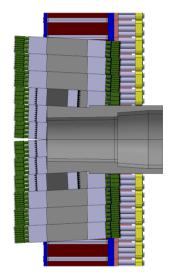
Reminder: LS3 configuration

- 9'344 cells (compared to 6'064 in current ECAL)
- Timing will be implemented for SpaCal region
- \rightarrow requires new electronics for \approx 3'300 cells
- Existing modules will be rearranged (4x4 cm² Shashlik modules moved out to avoid too much radiation damage, WLS fibres could be easily replaced)


 $\frac{\text{Cell size:}}{2 \times 2 \text{ cm}^2} \\ 3 \times 3 \text{ cm}^2 \\ 4 \times 4 \text{ cm}^2 \\ 6 \times 6 \text{ cm}^2 \\ 12 \times 12 \text{ cm}^2 \\ \end{array}$

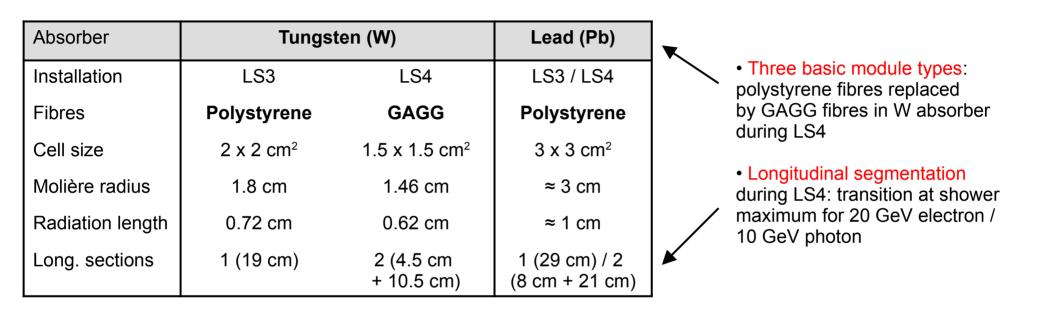
<u>Modules:</u>


- 32 *new* SpaCal-W modules
- 144 new SpaCal-Pb modules
- 176 existing modules in rhombic configuration
- 448 existing modules in rhombic configuration
- 2'512 existing modules in rhombic configuration


Rotation of SpaCal modules

• To avoid inhomogienities in the sampling, an incidence angle with respect to the beam direction is needed for SpaCal \rightarrow 3° in the X and Y directions sufficient to meet energy resolution target

 \rightarrow Incidence angle for photons from IP, $\theta,$ not sufficient



LHCb-INT-2021-010

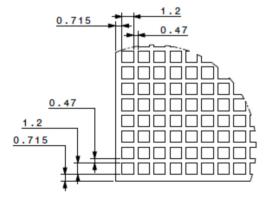
 \rightarrow Tilt of SpaCal modules implemented in the detector design (mechanical stability) and simulation software

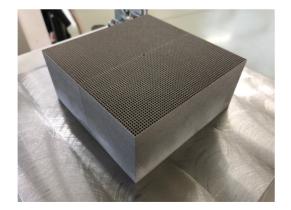
- Baseline SpaCal modules
- Baseline Shashlik modules
 - Additional options

Basic SpaCal modules types

Design considerations:

12/12/2022


- Cell sizes defined by occupancy
- Molière radii tuned (by choice of materials and geometry) to match the cell size
- \rightarrow sizeable charge sharing: excellent position resolution (in the order of 0.5 2 mm)
- Module length large enough to keep longitudinal leakage tiny (at least 25 radiation lengths)


Looking closer...

Modules with W absorber:

 The same absorber can be used with polystyrene (LS3) or GAGG (LS4) fibres
→ square fibres for technical reasons (production of GAGG fibres)

<u>Fibre size: 1.0 x 1.0 mm²</u> <u>Dimension of the holes:</u> 1.2 x 1.2 mm² <u>Pitch:</u> 1.67 mm <u>Absorber wall thickness:</u> 0.47 mm \rightarrow 5041 holes per module

Modules with Pb absorber:

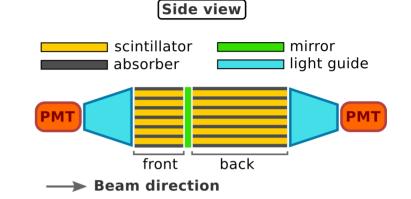
• Larger round fibres due to technical advantages

Fibre diameter:2.0 mm(found sufficient for energy resolution)Hole diameter:2.2 mmPitch:2.75 mm \rightarrow 1936 holes per module \rightarrow see
Sergev

→ see talk by Sergey Kholodenko

 \rightarrow see talk by Hubert Gerwig

Status of baseline ECAL module design and additional options


Motivations for longitudinal segmentation

 Improved time resolution from combination of front and back section (complementary information)
→ see talks in the test beam results session

 Less effect from radiation damage on performance (less impact on constant term in energy resolution)
→ see talk by Marco Pizzichemi

Additional information in event reconstruction
(e.g. better separation of close-by photons from high-energy neutral pions)
→ see talk by Alexey Boldyrev

- Potential improvements to particle identification, in particular electron-hadron separation
- \rightarrow see session on Friday morning

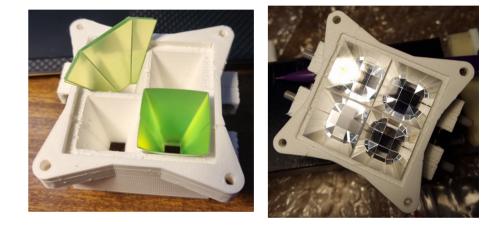
Other technical design aspects

Photon detectors:

Key characteristics to be met at required gains:

- Time resolution
- Signal linearity over full energy range
- Energy resolution

12/12/2022


PMTs currently under investigation (also in test beams): R7600U-20, R11187 (TileCal), R14755U-100, FEU115M (Russian)

 \rightarrow Ideal situation would be to use the same PMT for both SpaCal regions (most cost effective)

 \rightarrow see talk by Edu Piacoste

Light guides:

Hollow light guides coated with reflective material

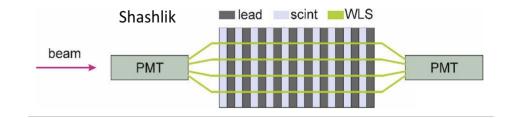
(focus of recent test beams) \rightarrow Intrinsically radiation hard

 \rightarrow Most cost effective solution

 \rightarrow see talk by Matteo Salomoni

- Baseline SpaCal modules
- Baseline Shashlik modules
 - Additional options

Shashlik modules for Upgrade II


Shashlik modules: 4 mm thick scintillating tiles and 2 mm thick lead absorber tiles with wavelength shifting (WLS) fibres

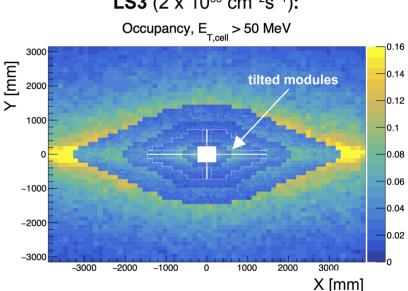
- Molière radius: 3.5 cm
- Radiation hardness limit is 40-50 kRad
- \rightarrow suitable for periphery of ECAL (\approx 94% of area)
- WLS fibres can be replaced without disassembling the modules (already done for prototypes)

 Baseline for LS4 is double-sided readout with continous fibres: study of current and optimised modules ongoing
→ see presentation by Yuri Guz

Options under consideration:

- Split WLS fibres with reflective material between front and back sections
- Use of radiation harder WLS fibers in the inner part, faster WLS fibers in the outer part (where the typical particle energies are lower)




- Baseline SpaCal modules
- Baseline Shashlik modules
 - Additional options

Intermezzo: occupancies

• Andreas showed in the previous talk the EM flux (= electrons and photons per BX and cell)

• Here occupancy from detailed simulation (\rightarrow see talk by Marco Pizzichemi) of the modules described of the previous slides (also including the hadronic component!)

LS3 (2 x 10³³ cm⁻²s⁻¹):

No timing information used

12/12/2022

- Generally the occupancy maps are reasonably flat
- High occupancy directly outside of SpaCal region with W absorber, impact also seen in physics benchmarks

Options to refine the baseline design

LS3 configuration:

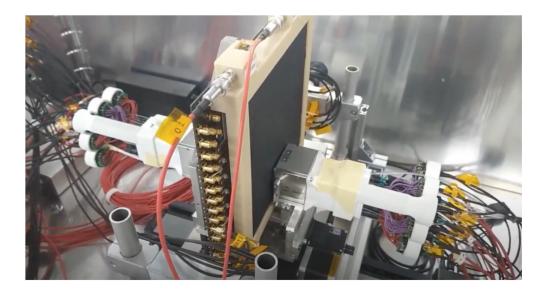
In addition to timing foreseen in the SpaCal region, add timing capabilities to (a part) of the Shashlik region
 → would require new electronics for more channels in LS3

LS4 configuration:

• Mitigation of high-occupancy region around the inner 32 modules:

- Use ≈ 40 instead of 32 SpaCal-W/GAGG modules?
- → Absorber largely available, because SpaCal-W/GAGG modules are shorter than SpaCal-W/Poly
- Add additional SpaCal-W/Poly region?
- \rightarrow Move LS3 modules outside and add new SpaCal-W/GAGG modules for LS4
- Build more than 144 SpaCal-Pb/Poly modules instead of new Shashlik modules with 4x4 cm² cell size?
- \rightarrow depends on which solution is more cost effective and the interest of the involved institutes

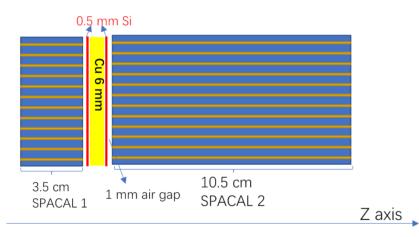
 \rightarrow Physics impact of these modifications to be studied

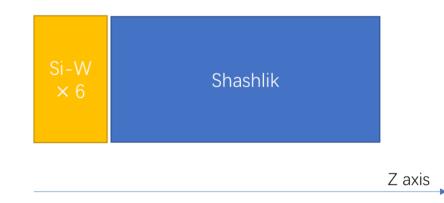

Additional layers for LS4 (1)

Alternative options described in the Framework TDR:

- Timing layer in the shower maximum (MCP-PMTs or silicon layers)
- \rightarrow benefit over baseline modules to be demonstrated
- Tungsten-silicon sampling calorimeter (but: expected energy resolution is $\approx 20\% / \sqrt{E} \oplus 1\%$)

Current studies:


1.) Active R&D on LAPPD timing layer (including test beams with SpaCal-W/GAGG module, irradiation campaigns) → see talk by Stefano Perazzini


Additional layers for LS4 (2)

2.) Simulation studies of additional silicon layers

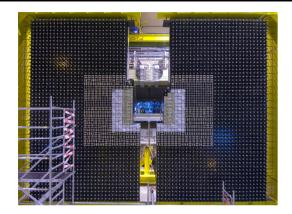
SpaCal-W/GAGG with 2 included silicon timing layers

Si-W pre-shower detector in front of Shashlik module

\rightarrow see talk by Zhenwei Yang

12/12/2022 Status of baseline ECAL module design and additional options

Summary and conclusions


- Consolidation during LS3 needed to ensure survival of the ECAL:
- Addition of radiation-tolerant SpaCal region
- Rearrangement of Shashlik modules for better physics performance
- Design of SpaCal-W and SpaCal-Pb modules with polystyrene fibres established
- \rightarrow These modules and the related infrastructure (electronics platform, ...) are also useful for Upgrade II
- No show stoppers known, but large amount of R&D needed before mass production
- In parallel, the work towards Upgrade II continues:
- Optimisation of the LS4 configuration through detailed simulations
- R&D on crystal scintillator for the innermost region
- Improvements to the timing capabilities of Shashlik modules
- R&D on the timing layer option
- ...

Thank you!

Backup slides

12/12/2022 Status of baseline ECAL module design and additional options

Reminder: SpaCal/Shashlik ECAL for Upgrade II

۲ [cm] 300 ECAL doses --4 x 10⁴ Gv 250 $-1 \times 10^4 \text{ Gy}$ 12x12 cm² 200 150 6x6 cm² 100 4x4 cm 250 300 350 150 200 X [cm]

Requirements for the Upgrade II:

- Sustain radiation doses up to 1 MGy and $\leq 6 \times 10^{15}$ 1 MeV neq / cm² in the centre
- Keep current energy resolution of $\sigma(E)/E \approx 10\%/\sqrt{E} \oplus 1\%$
- Pile-up mitigation crucial
- \rightarrow Timing capabilities with O(10) ps precision, preferably directly in the calorimeter modules
- \rightarrow Increased granularity in the central region with denser absorber

SpaCal technology for inner region:

- Innermost modules with scintillating crystal fibres and W absorber
- \rightarrow Development of radiation-hard scintillating crystals
- \rightarrow 1.5x1.5 cm² cell size
- 40-200 kGy region with scintillating plastic fibres and Pb absorber
- → Need radiation-tolerant organic scintillators
- \rightarrow 3x3 cm² cell size

Shashlik technology:

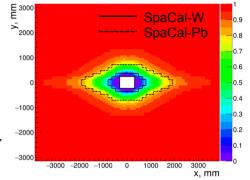
- Timing with new WLS fibres, long. segmentation (double-sided readout)
- \rightarrow Cost optimisation by refurbishing <code>~2000</code> existing modules for timing
- \rightarrow Adapt to the required cell sizes by adding \approx 1300 new modules

LS3 consolidation: W absorber for innermost modules equipped with scintillating plastic fibre for 2x2 cm² cell size

CERN/LHCC 2021-012

19

Radiation limit of current Shashlik technology

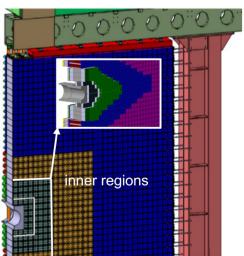

12/12/2022

Status of baseline ECAL module design and additional options

Reminder: LHCb ECAL upgrade strategy

Run 3 in 2022-2025:

Run with unmodified ECAL Shashlik modules at L = $2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$


LS3 consolidation in 2026-2028:

Introduce single-section rad. tolerant SpaCal (2x2 and 3x3 cm² cells) in inner regions and rebuilt ECAL in rhombic shape to improve performance at L = 2(4) x 10^{33} cm⁻²s⁻¹ \rightarrow 32 SpaCal-W & 144 SpaCal-Pb modules with plastic fibres compliant with Upgrade II conditions \rightarrow Could include timing information with single-sided readout to inner regions

LS4 Upgrade II in ≥2035:

Introduce double-section rad. hard SpaCal (1.5x1.5 & 3x3 cm² cells) and improve timing of Shashlik modules for a luminosity of up to $L = 1.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

- \rightarrow Innermost SpaCal-W modules equipped with crystal fibres
- \rightarrow Include timing information and double-sided readout to full ECAL for pile-up mitigation

