SPACAL W-GAGG Performance

Loris Martinazzoli^{1,2}

on behalf of the LHCb ECAL Upgrade II R&D Group

¹ CERN, Geneva, Switzerland ² Università degli Studi di Milano-Bicocca, Milan, Italy

Upgrade Strategy

1.5 x 1.5 cm² cell region - SPACAL W

- 32 modules Tungsten absorber
- Plastic fibres (LS3)
- Garnet crystal fibres (LS4)

3 x 3 cm² cell region - SPACAL Pb

- 144 modules Lead absorber
- Plastic fibres

4x4, 6x6, 12x12 cm² cell regions - Shashlik:

• refurbished and upgraded with faster WLS fibres

Upgrade Strategy

1.5 x 1.5 cm² cell region - SPACAL W

• 32 modules - Tungsten absorber

•	Plastic fibres	(LS3)
•	Garnet crystal fibres	(LS4)

3 x 3 cm² cell region - SPACAL Pb

- 144 modules Lead absorber
- Plastic fibres

4x4, 6x6, 12x12 cm² cell regions - Shashlik:

• refurbished and upgraded with faster WLS fibres

Radiation doses up to **1 MGy and 6x10¹⁵ 1 MeV neq/cm²** for 300 fb⁻¹

GAGG

	light yield (photons/MeV)	first decay time (ns)	second decay time (ns)
$\mathrm{Gd}_{3}\mathrm{Al}_{4}\mathrm{Ga}_{1}\mathrm{O}_{12}$	15895	316 (100%)	
$\mathrm{Gd}_{3}\mathrm{Al}_{3}\mathrm{Ga}_{2}\mathrm{O}_{12}$	45 931	221 (100%)	
$\mathrm{Gd}_3\mathrm{Al}_2\mathrm{Ga}_3\mathrm{O}_{12}$	42 217	52.8 (73%)	282 (27%)
$\mathrm{Gd}_{3}\mathrm{Al}_{1}\mathrm{Ga}_{4}\mathrm{O}_{12}$	17912	42.2 (34%)	90.5 (66%)
$Gd_{3}Al_{0}Ga_{5}O_{12}$	0	*ND	*ND

K. Kamada et al., Cryst. Growth Des. 2011, 11, 10, 4484-4490

Ce-doped multi-component garnets discovered in 2011.

Gadolinium Gallium Aluminium Garnet Gd₃Al₂Ga₃O₁₂ (GAGG):
High light output and relatively fast decay time (~50 ns)

- Tunable composition

K.Kamada, Optical Materials 36 (2014) 1942–1945 K. Kamada, Optical Materials 41 (2015) 63-66

- Excellent time resolution close to LYSO:Ce
- **Radiation hard** tested up to 1 MGy

4

Courtesy of K. Lebbou, ILM

The Prototype

SPACAL prototype with **W** absorber and garnet crystals.

- Absorber in pure tungsten 19 g/cm³
- 9 cells of 1.5x1.5 cm² (Molière radius: ~ 1.5 cm)
- 4+10 cm long (~ 7+18 X₀)
- ESR mirror between sections
- 1x1 mm² garnet crystal fibres

The Prototype

SPACAL prototype with **W** absorber and garnet crystals.

- Absorber in pure tungsten 19 g/cm³
- 9 cells of 1.5x1.5 cm² (Molière radius: ~ 1.5 cm)
- 4+10 cm long (~ 7+18 X₀)
- ESR mirror between sections
- 1x1 mm² garnet crystal fibres

Mix of YAG and GAGG upgraded to pure GAGG in 2021

DESY 2020-2021 SPS 2022

DESY 2020-2021 SPS 2022

Nuclear Inst. and Methods in Physics Research, A 1045 (2023) 167629 Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Performance of a spaghetti calorimeter prototype with tungsten absorber and garnet crystal fibres

L. An^a, E. Auffray^a, F. Betti^a, F. Dall'Omo^a, D. Gasconⁱ, A. Golutvin^b, Y. Guz^c, S. Kholodenko^{c,f}, L. Martinazzoli^{a,b,*}, J. Mazorra De Cos^c, E. Picatosteⁱ, M. Pizzichemi^{a,h}, P. Roloff^a, M. Salomoni^a, D. Sanchezⁱ, A. Schopper^a, A. Semennikov^d, P. Shatalov^d, E. Shmanin^f, D. Strekalina^f, Y. Zhang^g

⁸ European Organization for Nuclear Research (CERN), Geneva, Switzerland ⁹ Imperiol College London, London, United Kingdom ⁶ Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Provino, Russia ⁴ Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia ⁸ Institute of Endo Corpuscillar, Contro Micto Universidal de Valencia CSIC, Valencia, Spain ¹ National Diversity of Science and Technology "MISIS", Mascow, Russia ⁸ School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China ^b Universita de Barcelona (ICCUB), Barcelona, Spain

ARTICLE INFO

ABSTRACT

Keywords: Calorimetry High energy physics (HEP) Particle detectors Spaghetti calorimeter (SPACAL) Fibres Scintillating crystals A spaghetti calorimeter (SPACAL) prototype with scintillating crystal fibres was assembled and tested with electron beams of energy from 1 to 5 GeV. The prototype comprised radiation-hard Cerium-doped Gd₃Al₂Ca₃O₁₂ (GAGC:Ce) and Y₃Al₃O₁₂ (YAG:Ce) embedded in a pure tungsten absorber. The energy resolution was studied as a function of the incidence angle of the beam and found to be of the order of $10\%/\sqrt{E}$ 01%, in line with the LHCS Shashlik technology. The time resolution was measured with metal channel dynode photomultipliers placed in contact with the fibres or coupled via a light guide, additionally testing an optical tape to glue the components. Time resolution of a few tens of picosecond was achieved for all the energies reaching down to (18.5 \pm 0.2) p at 5 GeV.

https://doi.org/10.1016/j.nima.2022.167629

Readout

Cells read out in 2 ways:

- Hamamatsu R12421 + PMMA light guides (LGs)
 Small size to equip all the cells for energy measurements
- Hamamatsu R7600U-20 (MCD) in direct contact
 Low TTS for timing (only 1 cell equipped front and back)

	1 000			
Module	LGs	PMTs	Voltage dividers	

Model	Size [mm]	Time Transit Spread [ns]
R12421	13.5 ø	1.4
R7600U-20	30 x 30	0.35

Hamamatsu R7600U-20 Hamamatsu R12421

- No optical glue or grease was employed (unless otherwise specified)
- R7600U-20 active area reduced with black mask to match the cell size

Energy Resolution

Hamamatsu R12421

Energy Resolution

Time Resolution

Time Resolution C&A GFAG

Hamamatsu R7600U-20

Time Resolution with Long Cables

The baseline approach for the calorimeter architecture is to move the Front-End board to the ECAL platforms (lower radiation dose area)

Tested the present 12 m long cables.

No major degradation with 12 m long cables

N.B. plot not comparable to previous slide due to different settings

Time Resolution with Light Guides

- Time resolution with dry coupling and different light guides length
- >50% worse time resolution @ 5 GeV due to light losses
- No major difference with length
 - Loss due to the **additional optical interfaces** between fibres, light guide, and PMT

Time Resolution with Optical Couplings

New Photomultipliers

R&D to identify candidate PMTs based on:

- Time transit uniformity and spread
- Signal linearity
- Geometry fitting the cell size

R11187 (TileCal) PMTs for the SPACAL Pb:

- Section of ~2.5x2.5 cm² fits the 3x3 cm² cells.
- Large set of R11187 PMTs soon purchased by ATLAS for their TileCal

R14755U-100 PMTs for the SPACAL W:

Issues with linearity! Probably due to voltage divider
 Lab measurements to be done

Time Resolution

Spatial and Angular Resolution

Measured spatial resolution of SPACAL **W-GAGG** with 3x3 cluster @ 3°+3°:

• <1 mm above 20 GeV combining the front and back sections

Longitudinal segmentation is a handle to measure the incidence angle of the particles:

Angular resolution ~1° at 40 GeV

SPACAL W-GAGG is the baseline solution for the innermost region (1.5x1.5 cm²) in LS4

- Energy resolution of $\sigma(E) / E \approx 10\% / \sqrt{E} + 1\%$ for the optimised configuration
- Time resolution above 20 GeV < 20 ps
- Spatial resolution of ~ 1 mm above 20 GeV

SPACAL W-GAGG is the baseline solution for the innermost region (1.5x1.5 cm²) in LS4

- Energy resolution of $\sigma(E) / E \approx 10\% / \sqrt{E} + 1\%$ for the optimised configuration
- Time resolution above 20 GeV < 20 ps
- Spatial resolution of ~ 1 mm above 20 GeV

R&D ongoing:

Scintillating materials

- Too large light output reduces PMTs lifetime
- Long decay time:
 - Spillover
 - Pulse integration in the electronics

Photomultipliers:

• Finding a candidate with the right size matching the performance requirements.

SPACAL W-GAGG is the baseline solution for the innermost region (1.5x1.5 cm²) in LS4

- Energy resolution of $\sigma(E) / E \approx 10\% / \sqrt{E} + 1\%$ for the optimised configuration
- Time resolution above 20 GeV < 20 ps
- Spatial resolution of ~ 1 mm above 20 GeV

R&D ongoing:

_____ see E. Auffray in Detector R&D session

Scintillating materials

- Too large light output reduces PMTs lifetime
- Long decay time:

Spillover

- see S. Perazzini in Electronics I session
- Pulse integration in the electronics

→ see E. Picatoste in Electronics II session

Photomultipliers:

0

• Finding a candidate with the right size matching the performance requirements.

Back-up

Testbeam Set-up

Set-up from the beam:

- 2 scintillating pads for trigger
- **2 MCP-PMTs** in combination as time reference (T_0)
 - Intrinsic time resolution of **15 ps**
- 3 Delay Wire Chambers for tracking
- Prototype enclosed in a dark box on a stage with 2 rotating axes (azimuth + altitude)

Pulses recorded with V1742 CAEN digitizer (DRS4-based), 5 Gs/s, bandwidth 500 MHz

Data from Testbeams at:

- DESY II May 2021-2022
- SPS November 2021 + June 2022

Time Resolution - Extra

Tested the **current** 12 m long cables at the front and the back instead of 3 m long ones

- No major degradation of time resolution observed
- Low-attenuation cables to be studied

N.B. plot not comparable to previous slide due to different settings

- Fomos GAGG cells with 3M optical coupling
 - Direct contact + dry (air) coupling
 - Direct contact + optical coupling
 - Light guide + optical coupling on both sides

New GAGG Compositions

- Current GAGG have scintillation decay time >40 ns
 - Time resolution degradation due to spill-over
 - Pulse shaping techniques (e.g. cable clipping) can recover partially the performance
- Too large light yield can reduce lifetime of the PMTs

- Light yield reduced
- Decay time accelerated
- Time resolution kept competitive

See presentation on Thursday 22, Session 12, "Acceleration of the scintillation response in garnet-type multicomponent scintillators"

Gadolinium Gallium Aluminium Garnet (GAGG)

Ce-doped multi-component garnets discovered in 2011. Amongst them is Gadolinium Gallium Aluminium Garnet Gd₃Al₂Ga₃O₁₂:

• High light yield and fast scintillation

K. Kamada et al., Cryst. Growth Des. 2011, 11, 10, 4484–4490

• Tunable composition

K. Kamada et al., Optical Materials 36 (2014) 1942–1945

• Acceleration of scintillation via divalent ions codoping (e.g. Magnesium)

K. Kamada et al., Optical Materials 41 (2015) 63-66

	light yield (photons/MeV)	first decay time (ns)	second decay time (ns)
$Gd_3Al_4Ga_1O_{12}$	15895	316 (100%)	
$\mathrm{Gd}_{3}\mathrm{Al}_{3}\mathrm{Ga}_{2}\mathrm{O}_{12}$	45 931	221 (100%)	
$\mathrm{Gd}_3\mathrm{Al}_2\mathrm{Ga}_3\mathrm{O}_{12}$	42 217	52.8 (73%)	282 (27%)
$\mathrm{Gd}_{3}\mathrm{Al}_{1}\mathrm{Ga}_{4}\mathrm{O}_{12}$	17912	42.2 (34%)	90.5 (66%)
$\mathrm{Gd}_3\mathrm{Al}_0\mathrm{Ga}_5\mathrm{O}_{12}$	0	*ND	*ND

Courtesy of K. Lebbou, ILM

K. Kamada et al., Cryst. Growth Des. 2011, 11, 10, 4484–4490

Search for the Candidates

- Samples tested spanning a factor 2 in light output and 3 in decay time
- High light output <--> slow decay time
- Scintillation is sped up at the expense of light yield with Mg codoping

Blue lines are constant light output/decay time ratios

Faster samples have also better light output/decay time ratio (better time resolution!)

Radiation Hardness

C&A GFAG

Garnet crystals are radiation hard

- Irradiated with protons of 24 GeV/c • up to 910 kGy $(3.1 \times 10^{15} \text{ p/cm}^{-2})$
 - Induced absorption below 4m⁻¹ at the emission peak

V. Alenkov et al., NIM A 816 (2016) 176

Samples irradiated to 1x10¹⁵ p/cm⁻²

Induced absorption below 2m⁻¹ at the emission peak