

R&D on garnet crystal fibres E. Auffray, CERN EP-CMX

Requirements for ECAL Upgrade II

Keep the current energy resolution of $\sigma(E)/E \approx 10\%/VE \bigoplus 1\%$ with the new operating conditions:

Radiation doses:

up to 1 MGy and 6x10¹⁵ 1 MeV neq/cm² in the center for 300 fb⁻¹: => New technologies more radiation hard than shashlik required in the centre

- Increased granularity
- Increased granularity
- Longitudinal segmentation

Need very fast and radiation tolerant scintillators => Fast radiationn hard crystal (fibres of 1x1x50mm3, 1x1x100mm3)

E. Auffray, 12/12/2022

Why garnet materials?

Very good radiation tolerance under gamma & proton radiations

M. T. Lucchini, et al.,, IEEE Transactions on Nuclear Science (2016), 63, 2/ E. Auffray, et al, Rad. Phys.Chem. (2019), 164, 108365/V. Alenkov, et a., NIM A (2019), 916, 418 226{229

Czochralski method Cut from large ingot

Why garnet materials?

Various growth methods exists to produce fibres

Micropulling down technique

ntelum

EFG-grown plate & fiber of LuAG:Ce from Adamant Namiki Co , Japan

⇒ Feasibility study was the main goal of Intelum project (European Rise project grant 644260) with 16 Partners (many from CCC) from 12 different countries: 11 academia and 5 companies

Why Garnet material?

Properties of Garnet Ce doped crystal

	Y₃Al₅O₁₂:Ce (YAG)*	Lu₃Al₅O₁₂: Ce (LuAG)*	Gd₃Al₂Ga₃O ₁₂ : Ce (GAGG)*	Lu ₂ SiO ₅ :Ce (LSO)
density (g/cm ³)	4.57	6.73	6.63	7.4
X ₀ (cm)	3.5 cm	1.3	1.59	1.1
Refraction index	1.82	1.84	1.9	1.82
Λ _{max} (nm)	550	535	520	420
LY @ RT (ph/MeV)	30000	25000	50000**	30000
decay time (ns)	**70 + slow component	**70 + slow component	**60 + slow component	40

*https://www.crytur.cz/materials/gagg/ ** varying from Composition see next slides

Focus on GAGG

GAGG: Tunable properties with composition

Energy resolution versus Light output

Effective decay time versus Light output

GAGG: Tunable properties with composition

Effective decay time versus Light output

t_{d eff}

Coincidence time resolution (CTR) versus photon density

* Material tested in SPACAL

.6<u>1.8</u> √τ_{d eff}τ_r / LO [a.u]

24

L. Martinazzoli et al., NIM A, 2021, 165231

Performance in SPACAL

Time resolution GFAG cell @ incident angle of 30 + 30 (DESY 2020, R7600-20)

Excellent timing performance in TB

Pulse shape comaparison

Performance in SPACAL

Excellent timing performance in TB But what will be the impact of pulse shape at HL-LHC?

L. Ann, NIMA, 1045 (2022) 167629 arXiv:2205.02500

shorten the main decay component

SPACAL Signal Simulated

Role of Ce⁴⁺ in timing properties

Ce⁴⁺ center can directly compete with any electron trap for electron capture in the first instants of scintillator mechanism => Expected faster decay time and lower slow component

Faster decay time with codoping Ce³⁺/Mg²⁺

Further acceleration of the emission

Heavy codoping Ce³⁺/Mg²⁺

Further acceleration of the emission

Heavy codoping Ce³⁺/Mg²⁺

No major loss of time resolution! Decay time decrease compensated the Light output reduction => the same photon time-density

Joint collaboration with CERN, FZU Prague, Uni Vilnius (CCC+ Aidainnova)

L. Martinazzoli et al., Mater. Adv., 2022, 3, 6842

E. Auffray, 12/12/2022

GAGG from ILM Lyon France

Already produced GAGG fibres for 5 cells SPACAL prototype

Extracted from ingot of 26cm long 5C 66 MIT 70122 82000 9 104 .3

Courtesy K. lebbou, ILM, France

E. Auffray, 12/12/2022

Garnets from Crytur, Turnov, Czech republic

YAG ingots

Mass production already exists

Already produced YAG fibres for 6 cells SPACAL prototype

Courtesy S. Sykorova, J. Houzvika, Crytur, Czech Republic

GAGG ingot

GAGG from SIPAT, China

2019

Mass production already exists

Will start to produce fibres for SPACAL prototype

Courtesy Y. Ding, SIPAT, China

NEXT STEPS TOWARD RUN5

R&D on GAGG

- Continue simulation to define the exact requirements in term of
 - Decay time
 - Light output
 - => Spill over impact
 - \Rightarrow Input for or from electronic readout
- Pursue the investigation on bulk material to decrease the decay time :
 - R&D on going with FZU Prague on small ingots
 - R&D on going with ILM Lyon on larger ingots
 - TWIN European project between ISMA, Kharkhov, ILM Lyon, CERN
 - Start collaboration between ILM Lyon, SIPAT China
- R&D to prepare mass production with optimised composition
 - Impact of new composition on the crystal growth characteristics
 - Optimisation of crystal ingot dimension (maximise production yield)
 - Fibre production from crystal ingots

Other R&D lines in "background"

- Alternatives to GAGG:
 - Eg. YAG crystals in Crytur
 - \Rightarrow Impact on detector geometry due to lower density to be analysed
- Alternatives of crystal growth method
 - Micropulling down technique
 - Optimisation crystal fibres quality
 - Multiple crucible

Schedule for R&D

Conclusion

Need to produce for 2031 : ~166000 crystal fibres of 1x1x50mm3 & 1x1x100mm³

- The technology to mass produce GAGG exists in various places
- Need to optimise it for LHCb upgrade II operating conditions in 6 years