

Simulation study of $B^0 \rightarrow K^{*0} \gamma$

Liupan An

On behalf of the LHCb ECAL Upgrade II R&D group

ECAL Upgrade II workshop @ IJCLab, Orsay, 12-14 Dec 2022

Simulation setup

Various ECAL scenarios are implemented in the hybrid-MC framework [See Marco Pizzichemi' talk]

≻Upgrade II:

✓ Innermost: 1.5×1.5 cm² SPACAL W+GAGG
 ✓ Second inner: 3×3 cm² SPACAL Pb+Poly
 ✓ Outer: 4×4/6×6/12×12 cm² Shashlik
 ✓ With longitudinal segmentation
 ✓ Dual timing readout for all modules

No tilt of SPACAL modules yet

Pile-up is included in simulation

→ Upgrade II luminosity configuration: peak $\mathcal{L} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ with 127 fb⁻¹@1.5 + 103 fb⁻¹@1.0 +105 fb⁻¹@0.6 = 335 fb⁻¹

 $B^0 \to K^{*0} \gamma$

>A typical high-energy photon channel

• Average *E* large and gets larger in inner region

- Average E_T similar and larger than 3 GeV for all regions
- Photon flux per cell is similar in all regions, and slightly larger for the 3×3 cm² cells

Clustering approach

≻3×3 cells clustering

✓ cell with larger deposit energy than all its neighbor cells taken as seed cell;
 3×3 cells surrounding seed cell taken as a cluster

✓ Seed cell with $E_{\rm T}$ threshold of 50 MeV

✓ Energy in front and back cell summed up; timing taken as that of seed cell

 \checkmark S, L and E corrections to position and energy of the clusters are implemented

✓ Algorithm to be improved: utilizing *long. segmentation, timing info* etc.

$M(K^{-}\pi^{+}\gamma)$ distributions

 $>M(K^-\pi^+\gamma)$ distributions with reconstructed photon energy for truth-matched photons ✓Mass peaks well reproduced ⇒ photon reconstruction works well ✓Pile-up effect gets more significant with larger luminosity as expected

Timing resolution

Timing resolution obtained as weighted average of front & back section time
Variation of timing resolution vs. photon energy not utilized yet

Timing cut

The timing cut is effective in reducing background

Performance comparison

✓ The same bkg. level and tracking efficiency for K^{*0} are assumed for all setups ✓ Timing resolution of K^{*0} vertex assumed to be 0

- Timing cut effective for Upgrade II
- With timing cut, Upgrade II performance can reach that of Run2
- Upgrade II downscoped option has a downscaled performance
- Upgrade Ib can improve performance wrt Run3

*UII downscoped: same setup as Upgrade II but w/o long. seg.

*Upgrade Ib: no timing info yet

*Run 3: radiation damage not considered yet

Liupan An

Mass fit

• Run 2 publication

• Upgrade II simulation

✓ Core mass resolution close to that in Run2

✓ Mass peak shifted upwards & large right tail due to pile-up; to be improved

Joint VELO/ECAL study

Timing resolution from tracking system can largely affect the whole performance

A joint VELO/ECAL performance study for Upgrade II is in preparation

[See Laurent Dufour' talk for more details]

- ✓ Preliminary match of VELO&ECAL events works well
- \checkmark Further studies to be performed

Summary and prospects

The $B^0 \to K^{*0}\gamma$ decay is studied using hybrid-MC simulation for ECAL upgrade

- ✓ Good timing resolution is obtained and found to be efficient in reducing background
- ✓ Preliminary performance studies show that the upgrade ECAL design is promising in reaching a good performance
- ✓ There is still large room for improvement by utilizing long. segmentation, timing info etc.

➢ Prospects

✓ Rotation of SPACAL modules have been implemented for Upgrade Ib and II; S, L and E corrections for Upgrade II in place and ongoing for Upgrade Ib; performance study of $B^0 \rightarrow K^{*0}\gamma$ will follow up soon

✓ Extend the study to low-energy photon mode, e.g. $\chi_{c1} \rightarrow J/\psi\gamma$

≻Joint VELO/ECAL study for Upgrade II is ongoing

Back up

Simulated Upgrade scenarios

ightarrowRun 1-3: 4×4/6×6/12×12 cm² Shashlik

➢Run4 (Upgrade Ib):

✓ Innermost: $2 \times 2 \text{ cm}^2$ SPACAL W+Poly.

✓ Second inner: 3×3 cm² SPACAL Pb+Poly

✓Outer: $4 \times 4/6 \times 6/12 \times 12$ cm² Shashlik

✓ No longitudinal segmentation

✓ Timing readout for SPACAL only (option with timing in Shashlik will also be checked)

≻Run5 (Upgrade II):

✓ Innermost: 1.5×1.5 cm² SPACAL W+GAGG
 ✓ Second inner: 3×3 cm² SPACAL Pb+Poly
 ✓ Outer: 4×4/6×6/12×12 cm² Shashlik
 ✓ With longitudinal segmentation
 ✓ Dual timing readout for all modules

➢A hybrid-MC framework was built with all these scenarios implemented [See Marco Pizzichemi' talk]

