Study of e^+e^- final states

ECAL Upgrade II Workshop

Federico Betti – CERN

IJCLab, Orsay 13/12/2022

Outline

- $B^+ \rightarrow K^+ e^+ e^-$
- $B^0 \rightarrow K^{*0} e^+ e^-$
- $Z \rightarrow e^+ e^-$

$B^+ \rightarrow K^+ e^+ e^-$

- Goal: study of bremsstrahlung photons reconstruction in Upgrade II configuration (Front and Back sections, modules tilted, timing both in SPACAL and Shashlik)
- Determine time resolution for bremsstrahlung ECAL clusters \rightarrow low-energy regime
- Study performance of timing cuts to suppress pile-up contamination
- Data sample obtained by merging the output of Run 3 detector + Hybrid ECAL simulation of:
 - **Signal** Particle Gun $B^+ \rightarrow K^+ e^+ e^-$
 - Minimum Bias with $\mathscr{L} = 1.5 \times 10^{34} \text{ cm}^{-2}$
- L, S, E correction implemented during reconstruction (3x3 clustering)

$$2_{s}^{-1}$$

$B^+ \rightarrow K^+ e^+ e^-$ – bremsstrahlung recovery

- A simplified version of LHCb bremsstrahlung recovery algorithm has been implemented
- Use $\vec{p}(e^{\pm})$ at z = 7.8 m (*i.e.* after magnet) to emulate $\vec{p}(e^{\pm})$ measured by tracking
- True $\vec{p}(e^{\pm})$ at production vertex and UT are used in the **extrapolation** to the ECAL surface
- Select clusters with seed with $E_{\rm T} > 50 {\rm ~MeV}$

$B^+ \rightarrow K^+ e^+ e^-$ — time resolution and selection

- $t_{F(B)}$ = cluster **seed time** of Front (Back) section
- $t_{\rm true}$ is the **true** arrival time of the γ
- In bins of $E_{\rm T}$, fit **2D** distribution $(t_{\rm F} t_{\rm true}, t_{\rm B} t_{\rm true})$ with a bivariate gaussian \rightarrow takes into account correlation between Front and Back \Rightarrow obtain combined $t_{\rm FB}$ and combined resolution
- Extrapolate from the e^{\pm} production vertex time t_{vtx} (with and without 20 ps smearing) to get expected arrival time t_{exp} to ECAL
- Apply a selection on $\Delta t = t_{FB} t_{exp}$

$B^+ \rightarrow K^+ e^+ e^- - B^+$ mass

N brems	Ratio wrt total
0	25%
1	47%
2	25%

High-mass tail, mainly due to pile-up, is significantly suppressed

$R^+ \rightarrow K^+ e^+ e^- - B^+$ mass

20 ps t_{vtx} smearing has a very small effect

N brems	Ratio wrt total
0	25%
1	47%
2	25%

High-mass tail, mainly due to pile-up, is significantly suppressed

$B^+ \rightarrow K^+ e^+ e^-$ — future steps

- Use simulation framework developed by VELO team to include luminosity decay and vertex time resolution (see <u>talk</u> by Laurent)
- Implement bremsstrahlung recovery algorithm introduced in Run 3 (see talk by Carla)
- Study the potential of directly implementing time information in bremsstrahlung recovery
- Study the $e \pi$ discriminating power using E/p

$B^0 \rightarrow K^{*0} \rho^+ \rho^-$

- Goal: study of timing effect in bremsstrahlung photons reconstruction and E/p for $e - \pi$ discrimination ($B^0 \rightarrow K^{*0} \pi^+ \pi^-$)
- Different framework: homogeneous Geant4 simulation (see <u>talk</u> by Daniele)
- Pile-up: $\mathscr{L} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ peak luminosity + luminosity decay
- **Time resolution** implemented through smearing

Daniele Manuzzi Stefano Perazzini

$B^0 \rightarrow K^{*0} e^+ e^-$

- Timing cut has small effect (significantly smaller than in $B^+ \rightarrow K^+ e^+ e^-$ study)
- $B^+ \rightarrow K^+ e^+ e^-$ study shows larger distribution \Rightarrow to be **understood** better

Daniele Manuzzi Stefano Perazzini

$Z \rightarrow e^+ e^-$

- Goal: study and improve reconstruction of electrons with very high energies in Upgrade II configuration (Front and Back sections, modules tilted)
- For the FTDR, a study was already performed by using the homogeneous simulation
- Data sample: 10^5 Particle Gun electrons with 1 GeV < E < 100 GeV through Run 3 detector + Hybrid MC
- L, S, E correction not implemented yet during reconstruction (3x3 clustering)

Davide Zuliani

11

$Z \rightarrow e^+ e^-$ — Electron reconstruction

- Dedicated procedure to match clusters to true electrons (linear sum assignment problem)
- Bremsstrahlung photons are recovered
- This method can be used also for other physics processes

Davide Zuliani

$Z \rightarrow e^+e^- - ADC$ saturation

- ADC saturation relevant for high $p_{\rm T}$ electrons
- $E_{\text{T.max}} = (20 + 14 \sin \theta) \text{ GeV}$
- Effect studied using sample obtained by merging the output of Run 3 detector + Hybrid ECAL simulation of:
 - Signal **Particle Gun** $Z \rightarrow e^+e^-$
 - Minimum Bias with $\mathscr{L} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Davide Zuliani

$Z \rightarrow e^+ e^-$ — future steps

- Fit energy resolution on Particle Gun electrons as a function of the energy
- Improve association between bremsstrahlung photon and related cluster
- Implement L, S, E correction
- Use the results from Particle Gun electrons studies to improve reconstruction of $Z \rightarrow e^+ e^-$

Davide Zuliani

Conclusions

- Lot of activity ongoing in the study of decay modes involving e^+e^- pairs, in both high- and low-energy regime
- Different simulation frameworks are used and compared
- More work needed to understand if timing cuts can help in suppressing pileup in bremsstrahlung recovery
- Framework ready for $Z \rightarrow e^+e^-$, expected lot of progress in the next months

Extrapolation from UT

- Until now, I was looking for clusters in a 1x1 cells window around the direction of electron extrapolated from its origin vertex
- The Run1-3 algorithm actually looks in a window obtained from two extrapolated electron directions: one from origin vertex, the other from the UT (z = 2660 mm)
- The actual algorithm takes into account:
 - The uncertainty on x, y of the starting point \rightarrow neglected here ($\mathcal{O}(10) \ \mu m$)
 - The uncertainty on the track slope \rightarrow neglected here
 - The spread of the cluster \rightarrow assumed to be 0.5 x cell size

17

Timing cut

• For each event of **signal+MB** sample, combine reconstructed t_B and t_F using $t_{FB} = \frac{(\sigma_B^2 - \rho \sigma_F \sigma_B)t_F - (\sigma_F^2 - \rho \sigma_F \sigma_B)t_B}{\sigma_F^2 + \sigma_B^2 - 2\rho \sigma_F \sigma_B}$ which $\sigma_{B,F}$ and ρ obtained in previous step • Apply cut on $\frac{t_{FB} - t_{expected} - \mu_{FB}}{\sigma}$, where $t_{expected}$ is obtained **propagating** σ_{FR} the true time of B decay (**no smearing** applied yet)

Time resolution

Time resolution

Time resolution

$B^+ \rightarrow K^+ e^+ e^-$ mass plots

- Signal cluster = cluster
 associated to true signal γ, but
 it can include also energy
 released by pile-up particles
- High-mass tail mainly due to signal clusters affected by the presence of pile-up (to be checked better)

 $B^+ \rightarrow K^+ e^+ e^-$ mass plots

 $B^0 \rightarrow K^{*0} e^+ e^-$

	0 brem	1 brem
Run1	19 %	48 %
Run3	21 %	49 %
Run5–opt.1	22 %	49 %

- Using E_{front}/p helpful in improving background rejection
 ⇒ longitudinal segmentation important in e - π discrimination
- Run 2 performance is not reached with the baseline chosen configuration (Run 5 opt.
 1)

$Z \rightarrow e^+e^-$ energy resolution

