

ECAL Upgrade II Workshop @IJCLab, 13 December 2022

<u>Alexey Boldyrev</u>¹, Denis Derkach¹, Fedor Ratnikov^{1,2}, Andrey Shevelev¹

1 — HSE University (Laboratory of Methods for Big Data Analysis); 2 — Yandex School of Data Analysis;

pile-up background conditions

Inputs used

- Reference physics sample: $B_s^0 \to J/\psi(\to \mu^+\mu^-)\pi^0(\to \gamma\gamma)$
 - \circ $\mathscr{L} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Single/Double readout configurations for Run 5
- Basic cuts:
 - \circ p_T(y) > 500 MeV
 - \circ p_T(π^{0}) > 1000 MeV
 - \circ p_T(B_S⁰) > 2000 MeV
 - \circ M(π^0) = 100...170 MeV/c²
 - \circ M(B_s) = 4700...6000 MeV/c²
 - Charged tracks veto (see next slide)
- ML-based reco based on 3 sets of regressors to estimate:
 - \circ Position
 - Energy
 - Time

Charged tracks veto

Photon candidate requires no charged track nearby

Charged tracks to photon distance

Reconstructed π^0 width

Signal merged with minimum bias for $\mathscr{L} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

- Energy from regressor
- Position from regressor
- No timing

- Time for signal and background is determined by the time properties of the primary vertex (due to the (z, t)-profile of the beam)
- Time is corrected by angle
- Reconstructed pi0 time is considered by averaging the reconstructed time of photons
- 5x5(x2) cells as base features for time regressors for Shashlik (Spacal) modules
 - Same time for cells contained signal-only deposits
 - t_{cell} for cells with both signal + background deposits $t_{cell} = \frac{\sum t_i E_i}{\sum E_i}$
 - Regressor minimises $t t_{MC}$
- Module / electronics time resolution is **not considered**

Using time information

For the selected time window, mass window is optimised by finding the maximum of significance.

Performance using time information

Cut	Value, MeV(/c²)	Rel., %
Geom. acc.		100
p _T (γ)	> 500	79
p _T (π ⁰)	> 1000	45
p _T (B _S ⁰)	> 500	22
Μ(π ⁰)	[100,170]	21

Conclusions

- ML-based Reco is used for **Run 5 ECAL & FTDR** configurations
- Spatial resolution and charged track veto are presented
- Physics metrics are evaluated for $B_s^0 \to J/\psi(\to \mu^+\mu^-)\pi^0(\to \gamma\gamma)$ ($\mathscr{L} = 1.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$): \circ sigma of π^0 width
 - sigma of B_s width
- Significance vs. Efficiency dependencies are obtained using the time information predicted by the regressors

Backup slides

Spatial resolution for Spacal modules

- Without pile-up
- Separate regressors on (Rec Gen) RMSE for x & y positions of the hit
- Considered 5x5x2 cells as features for the regressors

Spatial resolutions for the Spacal W/GAGG and Pb/Polystyrene modules are flat above 50 GeV Stat. uncertainties are low.

In this figure, Spacal 1.5x1.5 cm² modules aren't tilted (see backup slides for the details)

