Available test beam facilities and specific infrastructure

Manuel Guittière <u>manuel.guittiere@ijclab.in2p3.fr</u>

LHCb ECAL UII workshop - IJCLab - 13/12/2022

ECAL prototypes in test beam

Time Resolution Pb/Polystyrene 3°+3°

LHCb ECAL UII workshop - IJCLab - 13/12/2022

DESY test beam facilities

- Location: Hamburg (Germany)
- DESY II electron/positron synchrotron:
 - Circumference: 292.8 m
 - Injector for 2.3 km-long PETRA III storage ring (High-brillance X-ray source)

- Test beam hall (bld. 27):
 - 2 test beam campaigns with LHCb ECAL prototypes in 2022 (2 weeks in May + 1 week in November/ December)

Beam generation

- Electron/positron accelerated by DESY II up to 7 GeV
- Bremsstrahlung photon beam generated by a carbon fiber target
- Photons converted to e+/e- pairs via a metal plate target (Cu or Al)
- Resulting beam momentum selected by setting the dipole magnet current before the collimator

Beam characteristics

- Electron/positron beam: rate up to ~1k part./cm²
- Selectable energy from 1 to 6 GeV
- Momentum spread: 1.5 to 12.7%
- Divergence ~ 1 mrad
- Good availability of the beam (very rare interruptions)
- Good stability of the beam (very few variations of the rate)

Link: The DESY II test beam facility

0.163

0.093

5.078

6.003

0.75

0.90

3.2

1.5

Overview of the test beam setup for ECAL prototypes

- 2 MCP-PMTs: time reference
- Telescope: tracking
- 1 pair of organic scintillators: trigger signal
- Dark box with ECAL prototype, connections, rotating axes to incline the module

Tracking detector: Mimosa telescope

- 6 planes of Mimosa26 silicon pixel sensors
- Operated by <u>EUDAQ</u> framework and analyzed by <u>Corryvreckan</u> offline reconstruction software
- Spatial resolution on reconstructed tracks ~2µm

Trigger and time reference

• 1 pair of organic scintillators downstream of the telescope providing a trigger signal in coincidence

 2 MCP-PMTs providing a reference for time measurements: intrinsic time resolution ~15ps

Prototype box on moveable support

- ECAL Prototypes placed in a dark box designed to fix them, set their angular inclination with remotely-controlled rotating axes and manage connections with HV power supply and DAQ system (more details in Matteo's talk)
- Box fixed on a 2-axes moveable support, remotely controlled from the control room (maximum load: 1t, sub-millimeter (x,y) precision)

SPS test beam facilities

- Location: CERN (Switzerland)
- Super Proton-Synchrotron
 - Circumference: 7 km
 - Injector for LHC

- Test beam hall (North Area) located in Prévessin (France)
 - 2 test beam campaigns with LHCb ECAL prototypes in 2022 (2 weeks in May + 2 weeks in October)

Beam generation

- Interaction with primary target (Be) initiating hadronic cascades followed by electromagnetic cascades (hadrons, muons, electrons produced)
- Neutral beam selected with magnets and collimator and converted into e+/e- pairs or hadrons
- Type and momentum of the particles in the experiment area selected using a series of adjustable magnets and collimator

Beam characteristics

A. Gerbershagen

Parameters	<mark>72</mark>		74	
Beam Line	H2	H4	H6	H8
Maximum Momentum [GeV/c]	400 / 360	400 /330	- / 205	400 / 360
Maximum Acceptance [uSr]	1.5	1.5	2	2.5
Maximum Δp/p [%]	± 2.0%	± 1.4 %	±1.5%	±1.5%
Maximum Intensity / spill * (Hadrons / <mark>Electrons</mark>)	10 ⁷ /10 ⁵	10 ⁷ /10 ⁶	10 ⁷ **/10 ⁵	10 ^{7 **} /10 ⁵
Available Particle Types	Primary protons*** OR electrons OR muons OR mixed hadrons (pions, protons, kaons)			

- Available particles: electrons, muons, primary protons, mixed hadrons
- Selectable energy from ~20 and up to ~300 GeV (electrons measured during last test beam campaign in October)
- Momentum spread below ~2%
- Divergence ~ 2 µrad
- Variable availability and stability of the beam (relies on main users activities e.g. LHC)

- Setup installed at TB line H2 (October 2022):
 - 2 MCP-PMTs: time reference
 - I pair of organic scintillators: trigger signal
 - Solution 3 Delay Wire Chambers: tracking
 - Dark box with ECAL prototype, connections, remotely controlled rotating axes to incline the module (more details in Matteo's talk)

Tracking detector: Delay Wire Chambers

P. Gorbunov

- DWC: X-Y Multi Wire Proportional Chambers with cathode delay line readout
- Working area: 120 x 120 mm²
- Gas: Ar (80%) and CO₂ (20%)
- HV: 2.25 kV
- Readout: CAEN TDC V1290N
- Resolution (one chamber): ~100 µm

LHCb ECAL UII workshop - IJCLab - 13/12/2022

- Beam facilities at DESY II and CERN SPS accelerators allow to perform measurements with ECAL prototypes on a wide range of energy (~ 1-300 GeV)
 - Important measurements to characterize the prototypes, the PMTs, the cables and for the readout electronics R&D
- 4 test beam campaigns (2 at DESY + 2 at SPS ~ 7 weeks) already achieved in 2022 in addition to 2020 and 2021 campaigns (many results presented yesterday) → more to come next year
 - Beam time requests at DESY and SPS already discussed
- Follow Matteo's talk for more details about the inside of the prototype box and on the DAQ operations!

