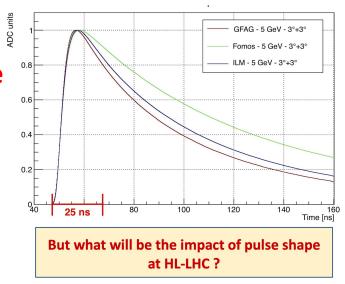
Simulation of spillover effects, signal treatment and ideas for improvement

Loris Martinazzoli¹, <u>Stefano Perazzini²</u>, Marco Pizzichemi¹, Vincenzo Vagnoni²

¹ Università di Milano Bicocca ² INFN Bologna

ECAL U2 Workshop - IJCLab, Orsay - 13th December 2022

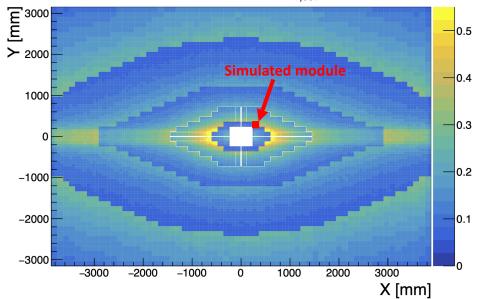

Outline

- Motivations
- Simulation of spillover effects
 - Investigated several crystals with different light-output parameters
- Analysis of simulated data
 - Pulse shaping techniques to analyse and subtract spillover effects
 - -Quantification of spillover effects
- Summary and outlook

Motivations

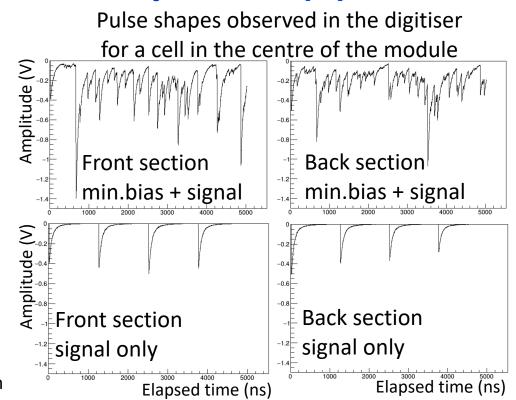
- Garnet crystals are excellent radiators in terms of light output and rising time but have a slow component with long decay time
- The long component may cause light to leak in the following events → spillover
 - Spillover must be taken into account and subtracted to properly determine energy and time
 - Even if subtracted, statistical fluctuations in the light output can deteriorate performance
- Need to quantify the potential effects of spillover to find optimal crystal parameters

E. Auffray's talk from yesterday Pulse shape comaparison



Simulation of realistic spillover (I)

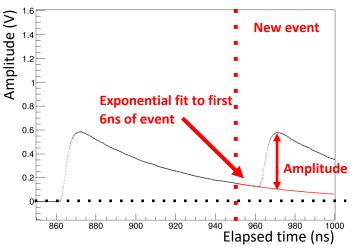
- Fully simulated p-p collisions + full detector at peak luminosity L = 1.5 x 10³⁴ cm⁻²s⁻¹
- Particle flux is made interact with a SPACAL W/GAGG module (8x8 cells)
 - SPACAL Hybrid simulation is used to emulate all the chain up to the pulse shapes in the digitiser (5 GS/s) → see M. Pizzichemi's talk from yesterday
 - Important assumptions on PMTs: no saturation, infinite dynamic range, fully linear, no electronic noise
- Pulse shapes are linked assuming
 25 ns bunch spacing
 - Every 50 events the pulse shape of an electron (signal) hitting the central cell of the module is added to the chain

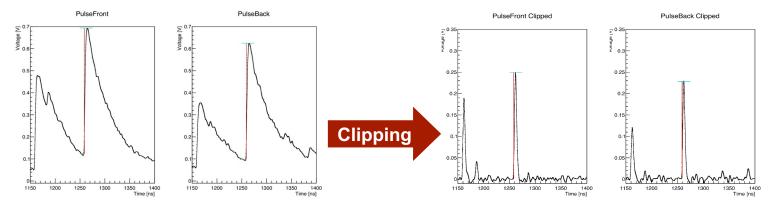

P. Roloff's talk from yesterday **LS4** (1.5 x 10^{34} cm⁻²s⁻¹):

Occupancy, front section, $E_{T,cell} > 25 \text{ MeV}$

Simulation of realistic spillover (II)

- Fully simulated p-p collisions + full detector at peak luminosity L = 1.5 x 10³⁴ cm⁻²s⁻¹
- Particle flux is made interact with a SPACAL W/GAGG module (8x8 cells)
 - SPACAL Hybrid simulation is used to emulate all the chain up to the pulse shapes in the digitiser (5 GS/s) → see M. Pizzichemi's talk from yesterday
 - Important assumptions on PMTs: no saturation, infinite dynamic range, fully linear, no electronic noise
- Pulse shapes are linked assuming
 25 ns bunch spacing
 - Every 50 events the pulse shape of an electron (signal) hitting the central cell of the module is added to the chain




Signal-only chain is used to determine reference performance ⁴

Pulse shsaping and determination of time stamp

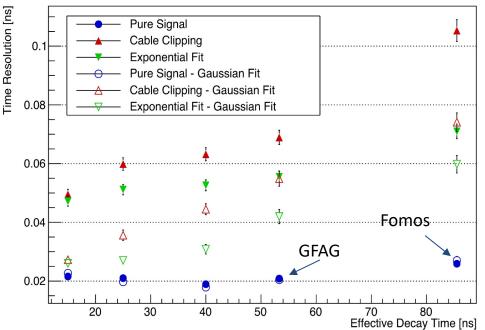
- Time stamp is measured using a CFD technique
- Two pulse shaping techniques:
 - Exponential fit to the baseline used to subtract spillover
 - Cable clipping:

$$V_{out}(t) = \frac{1}{2} \left(V_{in}(t) - r \cdot V_{in}(t - \delta_t) \right)$$

Simulation of different crystals

• Time resolution is inversely proportional to the **photon time-density**:

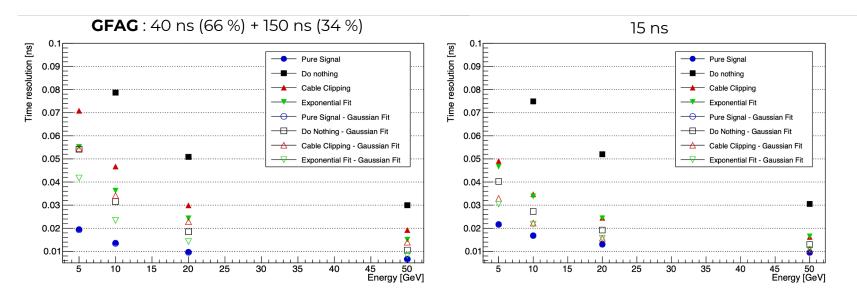
$$\sigma_T \propto \sqrt{\frac{\tau_{d,e} \cdot \tau_r}{LO}}$$


- Note: the formula above does not consider the PMT contribution
- Tested different scintillation decay times and light output but keeping constant the photon time density
- Effective decay time defined as: $-\frac{1}{\tau}$ •

$$\frac{1}{\tau_{d,e}} = \frac{A_1}{\tau_{d,1}} + \frac{1 - A_1}{\tau_{d,2}}$$

Material	Tau_{d,1} [ns]	Abundance %	Tau_{d,2} [ns]	Tau_{d,e} [ns]	Tau_r [ns]	Light Yield [Ph/MeV]
Fomos	59	56	200	85.5	0.1	40000
GFAG	40	66	150	53.3	0.06	35000
GFAG w/o Tau_{d,2}	40	100		40.0	0.06	26273
25 ns	25	100		25.0	0.06	16421
15 ns	15	100		15.0	0.06	9853

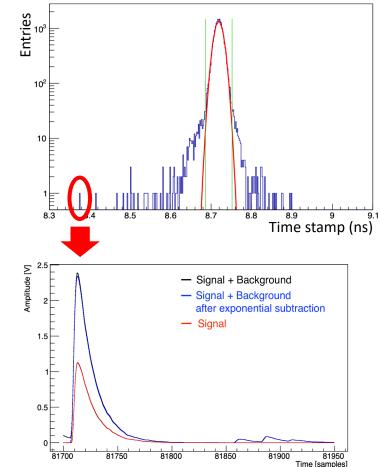
Results for different crystals


- Time resolution for pure signal is almost independent from effective decay time of crystals
- Spillover effects are mitigated for crystals with faster decay time
- Pulse shaping with exponential fit gives better performance with respect to cable clipping
- Time resolution evaluated with RMS is worse than with gaussian fit
 - Presence of pile-up

Here signals are 5-GeV electrons

Spillover for high-energy electrons

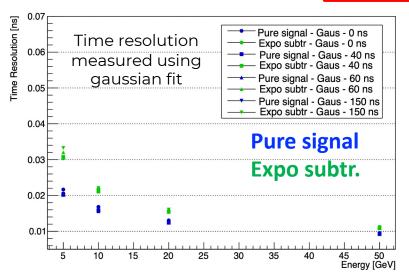
• Importance of spillover effects is studied also for signal electrons at higher energies


- Spillover effects are reduced at higher energies
- Cable clipping (triangles) and exponential fit (reversed triangles) give same performance only for fast GAGG
- Relevant difference between RMS (filled markers) and gaussian fit (hollow markers)

Pile-up

- Distribution of time stamps have outliers far from the core causing large RMS
 - 4.2% @ 5GeV and 3.1% @ 50 GeV of events outside ±3σ range
 - Few events already sufficient to deteriorate time resolution
- Investigation of outliers evidence that these are pile-up events with two particles hitting the same cell
 - Irreducible effect at the moment

Green lines are ± 3σ of gaussian fit

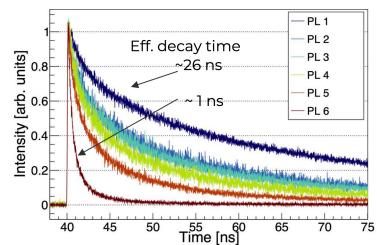

Combined Front/Back - Exponential sub. - 15 ns GAGG - 50 GeV

Secondary slow component

- The effect of a secondary slow component for fast GAGG has been investigated
 - On top of quite fast primary component (τ = 15 ns)
 - Constant photon time density
- If primary component is fast then a slow secondary component has a minimal impact on time resolution and only at low energies
 - Different markers correspond to different crystals

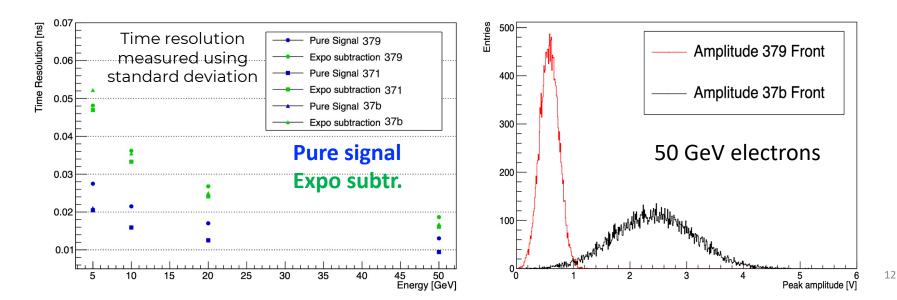
Material	Light Yield [ph/MeV]	$ au_{d,1}$ [ns] (%)	$ au_{d,2}$ [ns] (%)
1	9853	15 (100%)	0 (0%)
2	13137	15 (60%)	40 (40%)
3	14075	15 (60%)	60 (40%)
4	15395	15 (60%)	150 (40%)

10


Ultra-accelerated GAGG

- Novel garnet are being studied with ultrafast scintillation
- Concentration of Ce and Mg dopants can be increased to obtain very fast decay time at the cost of less light output
- Simulated an extremely fast GAGG
 - Comparison with not-so-fast GAGG
 - Photon time density kept constant

Material	Light Yield [ph/MeV]	$ au_{d,1}$ [ns] (%)	$ au_{d,2}$ [ns] (%)
37b	25000	25 (50)	80 (50)
371	13137	15 (60)	40 (40)
379	1000	1.7 (60)	15 (40)


E. Auffray's talk from yesterday

Scintillation decay - Pulsed X-Rays

Ultra-accelerated GAGG

- Ultra-accelerated GAGG (circles) does not reach performance of slower but still fast GAGG (squares and triangles)
 - Reason is due to small signal amplitudes due to reduced light yield
 - Optimal balance between fast decay time and light output must be found

Summary and outlook (I)

- Long decay time of GAGG crystals cause spillover effects that deteriorate timing performance of SPACAL
- Faster GAGG are essential to mitigate spillover effects
 - R&D samples moving in this direction already present on the market
 - With fast primary component a long secondary component is almost irrelevant
 - Optimal working point requires a trade off between decay time and light yield
- Pulse shaping techniques are important to mitigate spillover effects
 - Cable clipping and exponential subtraction give similar performance but only for fastest GAGG (τ =15 ns) and using the **full info with 5 GS/s sampling rate**
- Effect of **pile-up** with multiple particles hitting the same cell is an **irreducible effect for now**

Summary and outlook (II)

- Degradation of time resolution is small at higher energies, but not at low energies: from 20 to 30 ps @ 5 GeV even for fast GAGG (τ=15 ns)
 - In this study considered a module of SPACAL W/GAGG not in the hottest region
 - Simulated ideal PMTs: no saturation, infinite dynamic range, fully linear, no electronic noise
 - Simulated the best digitiser available with full shape at 5 GS/s
- Next steps (some work already started):
 - Define what can be achieved with less points at lower sampling rates
 indications from/to electronics
 - Investigate fancier pulse-shaping techniques (multivariate algorithms) to deal with pileup
 - Find **optimal tradeoff** between decay time and light output for crystals
- Optimisation studies require an holistic approach taking into account all the components (crystals, PMTs, electronics...)