



## **PMTs Photon detectors and cables**

### E. Picatoste

ECAL Upgrade II Workshop at ICJLab (Orsay)

13/12/2022





# PMTs for the Calorimeter Upgrade II



#### Gain values expected from ageing

| Cell size<br>case | Channel<br>technology | High G<br>(Imax lim.) | Low G<br>(Imax lim.) |
|-------------------|-----------------------|-----------------------|----------------------|
| 15 mm             | SPACAL W              | 4k                    | 1k                   |
| 30 mm             | SPACAL Pb             | 4k                    | 500                  |
| 40, 60, 120<br>mm | Shashlik              | 100k                  | 11k                  |

- Different detector zones, different needs (gain, ageing, geometry)
  - Inner part:
    - High doses
    - 2 channel technologies: SPACAL-W, SPACAL-Pb
  - Outer zone
    - Shashlik technology
    - Somehow more relaxed requirements due to lower radiation doses
- Stringent geometry in the innermost zone (15mm)
- Ageing is an important limit
  - Needs of high number of photoelectrons → maximum amount of integrated charge before degrading the device characteristics
  - Total integrated charge ≥ 10<sup>3</sup> C (to be confirmed/evaluated for MCD)

ECAL Upgrade II Workshop at ICJLab (Orsay)

13 December 2022

## **PMT** Measurements

#### • PMTs?

- R11187 (TILECAL), R14755U-100, R7600U-20 (MCD), FEU115M,...
- Perform measurements to check PMT characteristics at detector expected gains
  - Time resolution ~20 ps
  - Energy resolution
  - Signal linearity
- Other measurements
  - Ageing
  - Radiation hardness

#### PMT: R11187





PMT: R14755U-100

- TILECAL
- Good timing
- Lower gain (8 dynodes)

- Lower gain (6 dynodes)
- Good timing
- Smaller but still 1-2 mm large



## PMT Laboratory Setup





## PMT Measurements at the Laboratory

- First good results on time resolution, BUT
- Gain at laboratory using statistics and pulsed light method is not well understood
  - Need to use same Nphe and PMT bias voltage (HV) as test beam for comparison
    - Higher Nphe reduce time resolution!
- Try 1-Phe method
  - Use PACTA transimpedance amplifier (from CTA) to amplify PMT signal
  - Analyze data with double Gaussian fit or Bellamy function (E.H. Bellamy et al.INucl. Instr. and Meth. inPhys. Res. A 339 (1994) 468-476)
  - Estimate  $N_{phe}$  from the measured (1-Phe) gain?



## PMT Laboratory Setup 1-Phe





## PMT Measurements: 1-Phe Gain



## PMT Measurements: 1-Phe Gain



13 December 2022

ECAL Upgrade II Workshop at ICJLab (Orsay)

$$NL = \frac{R_{max}}{R_{min}}$$
, where  $R = \frac{\langle Ampl \rangle}{E_{heam}}$ 





- Max/Min response ~1% in the 20-100 GeV range
- 8 dynodes, tapered board to help against spacecharge effects
- More linear than Round MCD
- R14755U-100 (Round MCD)
  - Max/Min response significantly worse than Tilecal
    - 10-30% in the 20-100 GeV range at the useful HVs
  - Max/Min response ~2.5% even in the 20-40 GeV range at reasonable voltages.
  - 6 dynodes
  - R&D needed
    - Tapered board?
    - Transistorized base?
    - Asking some more dynodes?

$$NL = \frac{R_{max}}{R_{min}}$$
, where  $R = \frac{\langle Ampl \rangle}{E_{beam}}$ 





- Max/Min response ~1% in the 20-100 GeV range
- 8 dynodes, tapered board to help against spacecharge effects
- More linear than Round MCD
- R14755U-100 (Round MCD)
  - Max/Min response significantly worse than Tilecal
    - 10-30% in the 20-100 GeV range at the useful HVs
  - Max/Min response ~2.5% even in the 20-40 GeV range at reasonable voltages.
  - 6 dynodes
  - R&D needed
    - Tapered board?
    - Transistorized base?
    - Asking some more dynodes?



Round PMT ampliudes Vs. HV Vs. E

- Round PMT non-linearity causes?
- PMT DC output current should be lower than 1/100 the voltage divider current (I<sub>bias</sub>)
  - $>I_{bias} = 30-100 \mu A$
- Estimate PMT I<sub>out,DC</sub> from
  - Amplitudes
  - Rates: 10kHz to ~200Hz (at different E)
  - $I_{out,DC} \ge I_{bias}/100$  for  $V_{bias} \ge 600V$
- Plan:
  - > Reduce base resistors (2M $\Omega$  to 470k $\Omega$  or lower)
  - Test transistorized base



- Round PMT non-linearity causes?
- PMT DC output current should be lower than 1/100 the voltage divider current (I<sub>bias</sub>)
  - $>I_{bias} = 30-100 \mu A$
- Estimate PMT I<sub>out,DC</sub> from
  - Amplitudes
  - Rates: 10kHz to ~200Hz (at different E)
- $I_{out,DC} \ge I_{bias}/100$  for  $V_{bias} \ge 600V$
- Plan:
  - $\succ$  Reduce base resistors (2M $\Omega$  to 470M or lower)
  - Test transistorized base



ECAL Upgrade II Workshop at ICJLab (Orsay)

# PMT Signal Conditioning

- Photodetectors readout solution follows the same scheme as in current ECAL:
  - Minimal light transport with PMT sensors near modules,
  - All electronics in crates on top of the detector (reduced radiation),
  - Connection via analog link (coaxial) ~12m long (up to 20m considered).
- ASIC/chipset in TSMC 65nm with separate energy and timing processing paths



- Amplifier + Shaper circuit included on the PMT base or FEB under consideration
  - To compensate cable attenuation, improve SNR, if necessary, and reduce spill-over effort
  - To act as a buffer to help split the signal between paths
  - Different ASIC requirements (signal range, gain, noise, BW): add dedicated passive attenuator for each path.
  - If at FEB, use differential outputs to ASICs

13 December 2022

# PMT signal Conditioning: Opamp Circuit

• Two stage OpAmp based circuit on PMT divider:







13 December 2022

ECAL Upgrade II Workshop at ICJLab (Orsay)

## Summary

- Different detector zones, different needs (gain, ageing)
- Main PMTs under study: R11187 (Tilecal) and R14755U-100 (round)
- PMT tests
  - Laboratory: gain, linearity, time resolution
    - Gain has been measured with 1-Phe method with reasonable results
    - Need to define a method to define the N<sub>phe</sub> to be able to compare results
  - TB: energy resolution, time resolution, linearity, gain
    - Energy and time resolution routinely measured at TB
    - Linearity problems with R14755U-100  $\rightarrow$  review PMT base
  - Other: ageing, radiation hardness
- PMT signal conditioning is considered with operational amplifier-based circuit
  - To compensate cable attenuation, improve SNR and reduce spill-over effort
  - To act as a buffer to help split the signal between paths

# Thank you for your attention!





## PMT characteristics summary

| РМТ                     | Ø outer<br>(mm) | Ø Eff<br>area<br>(mm) | Photo<br>catho<br>de <sup>(1)</sup> | λ range<br>(nm) | λ<br>peak<br>(nm) | <qe><br/>PMT*GFAG<br/>(%)</qe> | Gain<br>~800V         | Dyno<br>des | Dark<br>Current<br>~800V<br>(nA) | t<br>rise<br>(ns) | T.T.S.<br>(ns) | Price<br>(€) |
|-------------------------|-----------------|-----------------------|-------------------------------------|-----------------|-------------------|--------------------------------|-----------------------|-------------|----------------------------------|-------------------|----------------|--------------|
| R14755U-100             | 16              | 8                     | SBA                                 | 300-650         | 400               | 9.5                            | 2.5 x 10 <sup>4</sup> | 6           | 0.1                              | 0.4               | ?              | 798          |
| R11187<br>(TILECAL)     | 25.7x25.7       | 18x18                 | BI                                  | 300-650         | 420               |                                | 1.0 x 10 <sup>5</sup> | 8           | 0.25                             | 1.5               | ?              |              |
| R7600U-20<br>(MCD 2020) | 30x30           | 18x18                 | ERMA                                | 300-920         | 530               | 15.3                           | 1.0 x 10 <sup>6</sup> | 10          | 20                               | 1.6               | 0.35           | 1750         |
| R12421 (2018)           | 13.5            | 10                    | EGBI                                | 300-700         | 420               | 10                             | 2.0 x 10 <sup>6</sup> | 10          | 1                                | 1.2               | 1.4            |              |
| R7899-20<br>(ECAL)      | 25              | 22                    | BI                                  | 300-650         |                   | 10.3                           | 2.0 x 10 <sup>6</sup> | 10          | 2                                | 1.6               | 0.6            |              |

(1) SBA: Super bialkali, BI: bialkali, ERMA: Extended red multialkali, EGBI: Extended green bialkali

PMT: R14755U-100







PMT: R7899-20



PMT: R12421



13 December 2022

ECAL Upgrade II Workshop at ICJLab (Orsay)

## PMTs being studied

PMT: R7899-20



- Used on ECAL/HCAL runs <sup>1</sup>/<sub>2</sub>
- Low timing uniformity over photocathode
- 10 dynodes

#### PMT: 7600U-20



- MCD 2020
- Good timing
- Relatively high gain (10 dynodes)





- TILECAL
- Good timing
- Lower gain (8 dynodes)

#### PMT: R14755U-100



- Lower gain (6 dynodes)
- Good timing
- Smaller but still 1-2 mm large



## PMT gain calculation for test beam at CERN

#### for digitizer

- E is the beam energy (E=150 GeV)
- $\xi$  is the max fraction of energy in one cell ( $\xi$ =0.4)
- Y is the photoelectron yield (Y=20000 GeV<sup>-1</sup>)
- $\tau$  is the effective decay time of scintillation ( $\tau$ =60 ns)
- U is the signal amplitude (U=1V)
- R is the digitizer input impedance (R=50 Ohm)
- e is the electron charge ( $e=1.6 \cdot 10^{-19}$  C)
- G is the PMT gain

The signal charge

$$Q = \frac{U\tau}{R} = Y\xi EGe$$

then

$$G = \frac{U\tau}{R\xi YEe} = 6250$$

then,  $V_{R7600} = 410V$  (750V if -40dB attenuation)

for integrating ADC

- E is the beam energy (E=150 GeV)
- $\xi$  is the max fraction of energy in one cell ( $\xi$ =0.4)
- Y is the photoelectron yield (Y=20000 GeV<sup>-1</sup>)

u < 1 V

- Q<sup>max</sup> is the max input charge (200 pC for LeCroy 1182)
- e is the electron charge ( $e=1.6 \cdot 10^{-19}$  C)
- G is the PMT gain

The signal charge

$$Q^{max} = Y\xi EGe$$

then

$$G = \frac{Q^{max}}{\xi Y E e} = 1042$$

then,  $V_{R7600} = 290V$  (530V if -40dB attenuation)

 $\tau = 60 \text{ ns}$ 

# PMT gain calculation for the LHCb operation

gain is limited by maximum anode current considering the very central spacal cells (sin  $\theta = 0.03$ )

- I<sup>max</sup> is the max anode current (Imax=100 μA)
- $\mathbb{L}$  is the total integrated luminosity ( $\mathbb{L}$ =300 fb<sup>-1</sup>)
- L is the instantaneous luminosity (L= $1.5 \cdot 10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>)
- D is the TID dose for 300 fb<sup>-1</sup> (D=1 MGy)
- M is the cell weight (M=0.5 kg)
- Y is the photoelectron yield (Y=20000 GeV<sup>-1</sup>)
- e is the electron charge (e=1.6·10<sup>-19</sup> C)
- G is the PMT gain

The dose rate

$$\frac{dD}{dt} = L\frac{D}{\mathbb{L}} = 0.05\frac{J}{kg \cdot s} = 3 \cdot 10^8 \frac{GeV}{kg \cdot s}$$

then

$$I^{max} = \frac{dD}{dt} \cdot MYGe$$
$$G = \frac{\frac{dD}{dt}}{\frac{dD}{dt}MYe}$$

The max transverse energy  $E_T^{max} = 20 \ GeV$ at the very central cell  $\sin \theta = 0.03$ 

- the  $E^{max} = E_T^{max} / \sin \theta \approx 600 \text{ GeV}$
- $\xi$  is the max fraction of energy in one cell ( $\xi$ =0.4)
- Y is the photoelectron yield (Y=20000 GeV<sup>-1</sup>)
- $\tau$  is the effective decay time of scintillation ( $\tau$ =60 ns)
- R is the input impedance (R=50 Ohm)
- e is the electron charge (e=1.6·10<sup>-19</sup> C)
- G is the PMT gain

The signal charge

$$Q = Y\xi EGe \approx 12 \ pC$$

the signal amplitude:

$$U = \frac{QR}{\tau} = 0.01 V$$

Then, within the Spacal section, the PMT gain should scale proportionally to  $\sin\theta$ .

i.e. G=156\*sinθ/0.03

13 December 2022

SPACAL meeting

# The Upgrade-2 FTDR configuration: gain limited by ageing

Lumi=1.5·10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>. SPACAL light yield (zone 15mm and 30mm): 20 ph.el/MeV Shashlik light yield: 3 ph.el./MeV

| The signal charge:    | cell<br>size(mm) | Y<br>(phe/GeV) | ξ   | Emax<br>(GeV) | τ (ns) |
|-----------------------|------------------|----------------|-----|---------------|--------|
| $Q = Y \xi E G e$     | 15               | 20000          | 0.4 | 698.4         | 60     |
| The signal amplitude: | 30               | 20000          | 0.4 | 453.1         | 4      |
| OR                    | 40               | 3000           | 0.4 | 291.5         | 10     |
| $U = \frac{q}{1}$     | 60               | 3000           | 1   | 140.8         | 10     |
| au                    | 120              | 3000           | 1   | 63.2          | 10     |

- Maximum signal amplitudes are orientative
  - If too high, the gain of the PMT can be lowered and PMT lifetime extended
- LSB is calculated dividint maximum signals by the minimum ADC step (4096 for 12 bit)
- LSB in Calo I is  $4.9 \cdot 10^{-4}$  V
  - and noise is about 1-2 LSB

#### PMT gain limited by I<sup>max</sup>

| -  | cell size<br>(mm) | G <sub>РМТ</sub><br>channel | G <sub>PMT</sub><br>REAR | G <sub>PMT</sub><br>FRONT |
|----|-------------------|-----------------------------|--------------------------|---------------------------|
|    | 15                | 568                         | 812                      | 1894                      |
| d/ | 30                | 381                         | 544                      | 1270                      |
|    | 40                | 8210                        | 11729                    | 27367                     |
|    | 60                | 21868                       | 31240                    | 72893                     |
|    | 120               | 21367                       | 30524                    | 71223                     |

|         | cell size | U (V)                 | U (V)                 | U(V)                  |
|---------|-----------|-----------------------|-----------------------|-----------------------|
| าล      | (mm)      | channel               | REAR                  | FRONT                 |
| <u></u> | 15        | 0.42                  | 0.60                  | 1.41                  |
| X<br>S  | 30        | 2.76                  | 3.95                  | 9.21                  |
| la)     | 40        | 2.30                  | 3.28                  | 7.66                  |
| 2       | 60        | 7.39                  | 10.56                 | 24.63                 |
|         | 120       | 3.24                  | 4.63                  | 10.80                 |
|         |           |                       |                       |                       |
|         | cell size | LSB (V)               | LSB (V)               | LSB (V)               |
|         | (mm)      | channel               | REAR                  | FRONT                 |
|         | 15        | 1.03x10 <sup>-4</sup> | 1.48x10 <sup>-4</sup> | 3.44x10 <sup>-4</sup> |

| В  |
|----|
| S  |
| نے |

| (mm) | channel               | REAR                  | FRONT                 |
|------|-----------------------|-----------------------|-----------------------|
| 15   | 1.03x10 <sup>-4</sup> | 1.48x10 <sup>-4</sup> | 3.44x10 <sup>-4</sup> |
| 30   | 6.75x10 <sup>-4</sup> | 9.64x10 <sup>-4</sup> | 2.25x10 <sup>-3</sup> |
| 40   | 5.61x10 <sup>-4</sup> | 8.01x10 <sup>-4</sup> | 1.87x10 <sup>-3</sup> |
| 60   | 1.80x10 <sup>-3</sup> | 2.58x10 <sup>-3</sup> | 6.01x10 <sup>-3</sup> |
| 120  | 7.91x10 <sup>-4</sup> | 1.13x10 <sup>-3</sup> | 2.64x10 <sup>-3</sup> |
|      |                       |                       |                       |



# W/Poly - Pulse shape



- Studied the average pulse at 60 GeV
  - R14755U pulses are shorter than TileCal's with faster rise and decay time
    - Better containment within the bunch crossing

| Single side readout | Rise time (10-90%) [ns] |
|---------------------|-------------------------|
| R11187 (TILECAL)    | 3.6                     |
| R14755U-100 (round) | 1.8                     |

- Average pulse shape affected by the readout configuration
  - Slower pulse in single side readout due to the light reflected by the mirror in front
  - Studies ongoing with Monte Carlo simulations



## Transient time measurements

 Objective: study the transient time uniformity over the photocathode of R7600U-20

#### • Measurements:

- PMT signal output amplitude
- Transient time: time between laser trigger and PMT output pulse
- Transient time spread: standard deviation at a given photocathode position

#### • PMTs:

- R7600U-20: ZF0002, TS0340
- ECAL R7899-20

#### **EXPERIMENTAL SETUP**



# PMT: R11187

Grid of points, (laser)

- 12x12 matrix, 1.5mm separation
- 500 waveforms per point
- Bias voltage = 800V
- 'Cardboard' collimator



# Light readout: PMTs time resolution and TTS uniformity

- Non uniformity may increase the time resolution
- The use of light guides would reduce the uniformity requirement
- Scan over photocathode with laser light





Grid of points, (laser)

Arrival time uniformity over R7899-20  $\times$  CFD 0.5  $\rightarrow$  total std = 1.36 ns





#### Arrival time uniformity over R7600U-20 $\checkmark$ CFD 0.5 $\rightarrow$ total std = 41 ps 0 -3.0 -4.5 -6.0 -6.0 -7.5 -9.0 -1.5 00 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 $\checkmark$ (mm)

Arrival time uniformity over R11187

![](_page_23_Figure_12.jpeg)

13 December 2022

# Timing and amplifier at PMT base

- 20 ps time resolution is mandatory to distinguish interactions  $\rightarrow$  maintain physics performance.
- Time path self-trigger threshold could be set for 5GeV depositions in channel.
  - Testbeam 2020 results assure 20 ps time resolution above 5GeV of beam energy ( $E_T = 2GeV$ ).
  - Time measurement for 2x2 cluster or each channel, depending on occupancy.
- Theoretically, time jitter above time resolution for smaller signals.
  - Assume
    - Dynamic Range=1V, for  $E_{T,max} = 40 \text{GeV}$  and  $E_{T,max} = 2 \text{GeV} \rightarrow \text{min signal 50mV}$ ;
    - Rise time (10%-90%) of SPACAL GFAG and MCD: 5ns ;
    - noise = 1mV,
  - therefore  $\rightarrow$  jitter = noise/slope = 1mV/(50mV/5ns) = **100ps rms**
- Can we increase the Slope by a factor 5 to achieve 20ps?
  - reduce scintillator rising time?
  - increase gain, but then pulse saturates at SCA so no CFD correction.
    - external time walk correction using energy path measurement?
    - external baseline correction with initial SCA samples/event

#### • Alternative to measure time with MCP-PMT layer.

- Sampling rate specification would increase by some factor.
- Sample pattern for digitization may change wrt module PMTs.

![](_page_24_Figure_19.jpeg)