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Embedding a timing layer into a double-side readout
LHCb ECAL module

• Achieve < 20 ps timing resolution on the arrival time of EM showers
• A timing layer can be made thin enough to be inserted within the two 

halves of a SPACAL or Shashlik module
• Possible to adopt such a solution without disrupting baseline ECAL 
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Why a timing layer within the ECAL?
• Obvious question: if we need to reach a time resolution <20 ps in the 

range 5-100 GeV, and ECAL modules are capable of doing that without an 
additional timing layer, do we need a timing layer at all?
• Obvious answer: probably not, unless such devices bring additional 

information
• However, we are not there
• E.g., Shashlik modules with double-side

readout, although showing amazing
performances which were unthinkable a couple
of years ago, reach 20 ps resolution
at 40 GeV, and at 5 GeV approach 40 ps
• SPACAL is more performant, at least at low

rates, but, as we have seen during this
workshop, there’s still a number of issues to
address like, e.g., crystal decay-time shortening

Shashlik state of the art
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Timing layer technologies under study

•Up to now, two technologies are being explored in 
LHCb, namely
•Cost-effective MCP-based multianode devices with no 

photocathodes
• Silicon layers for timing/imaging

• In the following we’ll go through some details of
the two options
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Idea of using MCP-based devices in 
calorimeters
• Old idea, first proposed: “On possibility to make a 

new type of calorimeter: radiation resistant and 
fast”, A. I. Ronzhin et al., IFVE 90-99, Protvino, 
1990
• Use of secondary emitter material as an active 

element in a sandwich type calorimeter
• Secondary particles from an EM shower are 

detected by an MCP with signal proportional to 
the number of secondaries 
• Most of secondary particles have low energy à MCP 

is very efficient
• MCPs are intrinsically very fast à can make a 

calorimeter with very good timing capabilities
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MCPs in a few words
• Traditionally produced from stacks

of optical fibres with lead-glass
cladding
• Array of miniature electron multipliers

• Typical diameters (d) of micropores in
the range 6-20 μm, with wafer thickness (L) of 0.4-1 mm
• The characteristic parameter is the ratio L/d which is roughly 

proportional to the log of the gain (G)
• log G ∝ L/d 

• Typical gain of a single MCP: O(103 - 104)
• With a stack of two MCPs one can easily reach gains of 106 – 107

6



MCP-PMTs
•Photocathode + MCPs + 

anode in a vacuum tube
•Single or multi-anode 

devices available 
commercially from several 
vendors
•Typical timing precision to 

charged particles around 
10-15 ps
• Commonly employed as fast 

triggers and time reference 
in beam tests

7



MCP-PMT lifetime
ℎ𝜗

• Electron collisions within MCPs 
can give rise to ionization of 
the residual gas or desorption 
of positive ions from the MCP 
surface à Ion feedback

• Ions then become bullets
accelerated towards the anode 
by the electric field and can 
react with or sputter the 
photocathode material à
degradation of quantum 
efficiency

• Photocathodes are the most
fragile part of these devices

V. A. Chirayath & A. Brandt 
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MCPs with enhanced lifetime
• Significant improvements 

made in recent years to 
improve the photocathode’s 
lifetime, but best results so far 
extend up to ~30 C/cm2

• In our case, our target is more 
than one order of magnitude 
larger emitted charge
• Traditional MCP-PMT layouts

are probably ruled out for nowLehmann et al., Nuclear Inst. and Methods in Physics
Research, A 958 (2020) 162357

10 C/cm2 26 C/cm2
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Photocathode-less operation
•Photocathode is important to

achieve high efficiency and large
input signal to the multiplication
MCP layers
• Its employment is important for

single MIP detection, but it’s not
fundamental when dealing with a
large number of particles as in the middle of an EM shower

•Photocathode’s removal simplifies the design and the 
assembly, reduces cost and makes the device more robust
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Another issue to be solved: large area and cost
• With traditional lead-glass MCP

technology, it’s difficult to produce 
large area MCPs
• Technology for the production

of large surface MCPs developed 
during last years by the LAPPD 
collaboration and Argonne, 
manufactured and commercialized by 
Incom Inc.
• MCP wafers made of commercial

borosilicate glass produced with hollow 
fibers (glass capillary arrays), then 
activated with atomic layer deposition 
(ALD) of resistive and emissive layers

• Wafer size up to 20x20 cm2 and pores 
down to 10 µm diameter regularly 
produced nowadays
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Enhanced secondary electron emission by ALD
•Emissivity in the MCP pores is enhanced with 
appropriate coating, such as MgO
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Two LAPPD versions
Gen-I: Direct Read-out with

internal delay line Anode
Gen-II: Resistive internal anode with 

capacitively coupled external anode PCB
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Good performances at low-rate beam tests

Three-MCP stack, 10 µm pores: 
we should make something better 
with two-MCPs only 

LAPPD with two-MCP stack
10 µm pores

• Basic performances with pixels of 2.5 x 2.5 cm2 well 
understood (the smaller the better, still further room for 
improvements)

See Stefano’s talk on Monday
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• Irradiation test with 24 
GeV protons didn’t show 
sizeable performance 
degradation up to 1016

protons/cm2
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Radiation tolerance and lifetime studies

• Ageing campaign of an 
Incom MCP with UV light 
in vacuum chamber 
showed a gain reduction 
of about a factor 7 up to 
300 C/cm2, easily 
recoverable by increasing 
the MCP voltage bias by
about 100 V 



Not yet the end of the story…
• Concept, performances at low rate, irradiation and and ageing tests à OK
• Still, we need to understand

limitations at high rate
• MCP pores have typical

recharging time after
multiplication in the range
of hundreds of microseconds
• This translates to a gain

reduction at high rates, that
can impact dramatically the
timing performance above a 
given rate à to be understood in detail next year

mm

m
m
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Silicon layers for timing/imaging
• Advantages of Si
• Silicon is a well-understood material, 

widely used in tracking detectors for 
many years and large areas (LHC 
detectors)
• Thin sensors (50 µm - 500 µm), 

depending upon the technology chosen 
(with/without multiplication) and the 
electronics performance (equivalent 
noise charge)
• Cell elements can be of different shapes 

(e.g., square, rectangular, hexagonal…) 
and pitch (from tens of µm to cm)
• With proper thermal management can 

withstand anticipated radiation
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Planned R&D
•Simulation studies to identify the optimum cell 
size/tile size to achieve the best spatial/temporal 
resolution
•Timing/spatial resolution performance before and 
after irradiation to be validated in test beam studies
• Investigation of alternative technologies/substrate 
materials
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Silicon with multiplication (LGADs)
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dielectric AC-pads

• LGADs are avalanche diodes specifically tailored for the detection of MIPS in HEP
• For MIPS: if the substrate is thin (~ 50 µm) and the gain is ~ 20 à signal is fast (~30 ps)
• LGADs are 20-50 µm thick as compared to hundreds of µm of standard strip/pixel sensors
• LGADs feature a p+ layer (gain layer) under the n+ layer
• Amplification is needed to have a good S/N when reading-out fast
• Use in 5D silicon sampling calorimeter has started being investigated 
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Large-area LGAD (BNL) almost ready for submission
• Total of 6 4” wafers: 2x20, 2x30, and 2x50 µm thick epitaxial layer
• AC-LGAD technology (try to do also DC-LGAD)
• 12 0.5 cm x 0.5 cm LGADs for this project
• Expected delivery: end of December 2022
• To be studied (Syracuse): signal formation

with TCT scanner

• Response with two different FE approaches
• See Marina’s talk
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Summary
•Studies on photocathode-less MCP-based timing 
layer well advanced and showing good 
performances, with margins for further 
improvements
•Need to focus on performances at high rate à main 
item for next year’s studies

•R&D on Si layers for timing/imaging resuming, 
also with some first hardware prototypes based 
on LGADs
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