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Embedding a timing layer into a double-side readout
LHCb ECAL module
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* Achieve < 20 ps timing resolution on the arrival time of EM showers

* A timing layer can be made thin enough to be inserted within the two
halves of a SPACAL or Shashlik module

* Possible to adopt such a solution without disrupting baseline ECAL
technologies
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Why a timing layer within the ECAL?

* Obvious question: if we need to reach a time resolution <20 ps in the
range 5-100 GeV, and ECAL modules are capable of doing that without an
additional timing layer, do we need a timing layer at all?

* Obvious answer: probably not, unless such devices bring additional
information

Shashlik state of the art
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Timing layer technologies under study

* Up to now, two technologies are being explored in
LHCb, namely

e Cost-effective MCP-based multianode devices with no
photocathodes

* Silicon layers for timing/imaging

*|n the following we’ll go through some details of
the two options



Idea of using MCP-based devices in
calorimeters

_ OouUT
* Old idea, first proposed: “On possibility to make a Nd [
new type of calorimeter: radiation resistant and |§ MCP
fast”, A. I. Ronzhin et al., IFVE 90-99, Protvino, ii

1990
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* Use of secondary emitter material as an active HY _L
element in a sandwich type calorimeter & +
 Secondary particles from an EM shower are o
detected by an MCP with signal proportional to
the number of secondaries i e
* Most of secondary particles have low energy = MCP e e
is very efficient
* MCPs are intrinsically very fast = can make a B MU B e

Tw (x,)

calorimeter with very good timing capabilities

Pig.3. Shower longitudinal development for electron energy 5 and
26 GeV, measured by NCPe. 5



MCPs in a few words

* Traditionally produced from stacks
of optical fibres with lead-glass
cladding

* Array of miniature electron multipliers

* Typical diameters (d) of micropores in

U
A s INPUT ELECTRODE
o | 4

CHANNEL
A () CHANNEL WALL
S
o
o

OUTPUT
INPUT ELECTRODE
ELECTRON /

] OUTPUT
ELECTRONS

—— STRIP CURRENT

the range 6-20 um, with wafer thickness (L) of 0.4-1 mm

* The characteristic parameter is the ratio L/d which is roughly

proportional to the log of the gain (G)

* log G < L/d

* Typical gain of a single MCP: O(103- 10%)
* With a stack of two MCPs one can easily reach gains of 10 — 107



MCP-PMTs

* Photocathode + MCPs + — %phw
anode in a vacuum tube e o o P
o S|ng|e or mu |t|_ 3 nOde DualMCP B J S AV ~ 2000V
devices available JiR Ly - T
commercially from several SRR
vendors e - '

* Typical timing precision to
charged particles around

10-15 ps
* Commonly employed as fast \ J
triggers and time reference P———— |
in beam tests . Housngsosomm PLANACON® XPg5012

Planacon XP85012 layout or XP85112



MCP-PMT lifetime
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V. A. Chirayath & A. Brandt

 Electron collisions within MCPs

can give rise to ionization of
the residual gas or desorption
of positive ions from the MCP
surface = lon feedback

lons then become bullets
accelerated towards the anode
by the electric field and can
react with or sputter the
photocathode material =2
degradation of quantum
efficiency

Photocathodes are the most
fragile part of these devic?s



MCPs W|th enhanced lifetime
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* Significant improvements
made in recent years to
improve the photocathode’s
lifetime, but best results so far
extend up to ~30 C/cm?

* [n our case, our target is more
than one order of magnitude
larger emitted charge

* Traditional MCP-PMT layouts
are probably ruled out for now
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Photocathode-less operation

* Photocathode is important to o —s

¥

achieve high efficiency and large é ’é§
—
input signal to the multiplication ==
MCP layers E o
* [ts employment is important for : aﬁ :
single MIP detection, but it’s not e

fundamental when dealing with a
large number of particles as in the middle of an EM shower

* Photocathode’s removal simplifies the design and the
assembly, reduces cost and makes the device more robust
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Another issue to be solved: large area and cost

* With traditional Iead-%lass MCP =
technology, it’s difficult to produce
large area MCPs

* Technology for the production
of large surface MCPs developed
during last years by the LAPPD
collaboration and Argonne,
manufactured and commercialized by
Incom Inc.
* MCP wafers made of commercial
borosilicate glass produced with hollow
fibers (glass capillary arrays), then

activated with atomic layer deposition
(ALD) of resistive and emissive layers

» Wafer size up to 20x20 cm? and pores
down to 10 um diameter regularly
produced nowadays
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EMISSIVE
LAYER

GLASS
SUBSTRATE

RESISTIVE
LAYER
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Enhanced secondary electron emission by ALD

* Emissivity in the MCP pores is enhanced with
appropriate coating, such as MgO

MgO
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Two LAPPD versions

Gen-l: Direct Read-out with Gen-ll: Resistive internal anode with
internal delay line Anode capacitively coupled external anode PCB
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Good performances at low-rate beam tests

Time resolution [ps]

See Stefano’s talk on Monday
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Basic performances with pixels of 2.5 x 2.5 cm? well
understood (the smaller the better, still further room for

improvements)
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Radiation tolerance and Ilfetlme studies

~_ 1200

* Irradiation test with 24 & !
. =

GeV protons didn’t show g |
sizeable performance x

degradation up to 1016
protons/cm?

LAPPD #119

900V / MCP
200V / gaps
10 V reverse bias on PC

* Ageing campaign of an
Incom MCP with UV light
in vacuum chamber
showed a gain reduction
of about a factor 7 up to
300 C/cm?, easily
recoverable by increasing
the MCP voltage bias by
about 100V

Single MCP gain
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Not yet the end of the story...

* Concept, performances at low rate, irradiation and and ageing tests - OK

e Still, we need to understand
& 3000

limitations at high rate £ Pae

> 50 MHz/cm?
2500

* MCP pores have typical
recharging time after 2000
multiplication in the range

> 30 MHz/cm?

> 20 MHz/cm?

> 10 MHz/cm?
1500

of hundreds of microseconds FeECT
. . 1060 > 2 MHz/cm?
* This translates to a gain > 1 MHz/cm?
reduction at high rates, that > 0 MHz/cm?
can impact dramatically the .
. . 0 500 1000 1500 2000 2500 3000 3500
timing performance above a mm

given rate > to be understood in detail next year
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Silicon layers for timing/imaging

* Advantages of Si
* Silicon is a well-understood material,

E 'FALICE FoCal-E Pixel et widely used in tracking detectors for
hw?goe?(:gmccwonbcam N T ~ o —30:3 many years and Iarge areas (LHC
i e s N 2 detectors)
st *2 ¢ Thin sensors (50 um - 500 um),
sof- s 25 depending upon the technology chosen
b £ (with/without multiplication) and the
3 electronics performance (equivalent
3 g ” noise charge)
£ e v o * Cell elements can be of different shapes
o | Sumany | (e.ﬁ., square, rectangular, hexagonal...)
UL PN PO FOVN FOURE PORL. AU IOV WA and pitch (from tens of um to cm)

X {mm)

* With proper thermal management can
withstand anticipated radiation
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Planned R&D

*Simulation studies to identify the optimum cell
size/tile size to achieve the best spatial/temporal
resolution

*Timing/spatial resolution performance before and
after irradiation to be validated in test beam studies

*Investigation of alternative technologies/substrate
materials
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Silicon with multiplication (LGADs)

LGADs are avalanche diodes specifically tailored for the detection of MIPS in HEP

For MIPS: if the substrate is thin (~ 50 um) and the gain is ~ 20 = signal is fast (~30 ps)
LGADs are 20-50 um thick as compared to hundreds of um of standard strip/pixel sensors
LGADs feature a p+ layer (gain layer) under the n+ layer

Amplification is needed to have a good S/N when reading-out fast

Use in 5D silicon sampling calorimeter has started being investigated

aluminum

Epitaxial layer — p

Epitaxial layer — p
substrate — p** ~
substrate — p**
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Large-area LGAD (BNL) almost ready for submission

* Total of 6 4” wafers: 2x20, 2x30, and 2x50 um thick epitaxial layer

e AC-LGAD technology (try to do also DC-LGAD)

e 120.5cm x 0.5 cm LGAD:s for this project

* Expected delivery: end of December 2022

* To be studied (Syracuse): signal formation
with TCT scanner
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* Response with two different FE approaches
e See Marina’s talk
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Summary

*Studies on photocathode-less MCP-based timing
layer well advanced and showing good
performances, with margins for further
Improvements

* Need to focus on performances at high rate > main
item for next year’s studies

*R&D on Si layers for timing/imaging resuming,

also with some first hardware prototypes based
on LGADs



