Role of HGAL in current PID
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Charged PID with Hcal

Two types of PID contributions
e Electron hadron separation
o  Small energy deposit for electron,
already lost most of its energy in Ecal
o  Will focus on electrons
e Muon hadron separation
o Lack of energy deposit for muon,
only small ionisation energy losses
e Example shown with (run 2 data)
o Hadron, a kaon (red line), with energy deposits
both in Ecal and Hcal
o  Electron with two energy deposits in Ecal
(track (blue line) + bremsstrahlung (dashed blue line))




Hcal reconstruction (for Run 3)

e As (additional) information for tracks (charged PID)
o There is no separate / independent clustering for the Hcal!
e One algorithm, one output, for the whole Hcal
o  Sum of energies of cells intersecting track extrapolation (line)
m Referred to as CaloHcalE in ProtoParticle
m Typically matches just one cell,
due to Hcal cell sizes

o Simple but very effective!
m The Ecal version gave us the most performant
electron-hadron PID feature in Run 1/2

// loop over input tracks
for ( auto const& trackincalo : tracksincalo.scalar() ) {
auto track = trackincalo.from();

auto ref state = track.state( state loc.value() );

if ( !propagateToCalo( calo state, ref state, calo front ) ) continue;

float energy = [IRdaudeT( calo state, digits, calo, calo zsize, m nplanes );
// save result for this index in tracks

output_table.add( track, energy );

// statistics

m_energy += energy;




How do Hcal energies typically look like?

o

([

(]
>
£
(%]
c
@
oS
>
£
o
©
Q
o
_
(o

Normalized energies, to track momentum
O

Electrons clearly deposit less than hadrons

as it is highly correlated, and we don’t want to select on momenta, but PID features

Likelihood ratios of about 2 to 5

O

Examples shown

m from all tracks in B=J/Y(+ee)K simulation; same plot: linear (left), log (right)
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e At higher momenta, performance increases

o At>50 GeV/c up to order of magnitude false positive rate reduction!

e Suggesting overlap with other deposits mostly low momentum
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How does Hcal PID depend on occupancy?

probability density

Consistent picture as with momentum
O

Suggesting the PID performance scales with

Low momentum deposit overlap diluting performance

(track) momentum times inverse of occupancy
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Hcal PID for electrons in comparison to Ecal

Correlations with other PID not taken into account with DLL sums

[
o Better to see / check it combined, using ML
m In GradientBoostingClassifier from Sklearn, essentially electron versus pion
e Given a factor 2-5 reduction in false positive rate, consistent with what we saw earlier

(note this is mostly low momentum)
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Hcal PID w.r.t better Ecal occupancy handling

Ecal PIDe is using new
cell selection method

(@)

More is gained by improving

More in backup

occupancy handling in Ecal
than adding Hcal info!
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And muon PID?

probability density

Also based on HcalE/ p

Muon Hcal PID tends to be a bit more performant than for electrons
o Muons deposit even less energy than electrons
Same occupancy and momentum dependencies / issues, very similar to electrons

Just a thought / question, but also for muons, higher granularity in muon systems is better? (than

putting that money in Hcal?), especially considering decay in flight (kink detecting)?
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Summary

e Charged PID from Hcal in the form of Hcal energy over momentum
o Energy determined from cells intersecting track extrapolation
e Both electron and muon PID (with respect to hadrons)
e Performance scaling with momentum and inverse of occupancy
o Higher luminosity clearly decreasing performance
e Hcal adding typically 2 - 5 false positive rate reduction
o Can be overcome with better granularity (treatment) in Ecal (?)
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Backup



Electron PID from electron Ecal shower

e PID for electrons based on energy deposit in cells directly
related to track (not brem)
e What options did we have (Run 1/2)?
o  3x3 cluster (track-cluster matching)
o EcalE method: track state - cell intersection
® New, main Run 3 method

O  cell selection based on energy expectation per cell

Cell selection
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Can we be more selective in the cells
we select? And can we extract more

per cell information?
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How to estimate cell energy? Gell selusibion,

cluster EelE This mefbed
e Use first principle electron shower profiles ?',;V*h Y, | ‘
e Generate showers with Monte Carlo / A
with said distributions 5 P oo ot
e Parametrize results based on track and cell parameters clister cell intessetim cell enequ
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Parametrizing cell energy

e Shower parameters

O

O

O

O

closest distance to shower axis (d)

angle of closest distance vector in xy plane (theta)
length in xy plane of shower axis (txy = sqrt(tx*2+ty*2))
position along shower axis (Ibar)

e Distance strongest effect, parametrize by sigmoid /
logistic function

e Bin sigmoid parameters in other shower parameters
(lookup table, basically)
e Storein TH3, so can also do trilinear interpolation
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10! 4 [ electrons

] |
Using energy expectation for PID e

e Build more selective (in cell choice) E/p
o Total energy of cells with minimum
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of energy / momentum fraction of 10%
e Can we squeeze more info out of it per cell?
o Construct likelihood ratio: N
summed, per cell, delta-log-likelihood (DLL) NewsSfpietigar-oos
o DLL parametrized/conditional per: \ =i
[ hadrons
m expected energy fraction
10-1 4
B momentum
o Parametrization based on LHCb full MC i
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Performance

In GradientBoostingClassifier from Sklearn, essentially electron versus pion (and a bit of kaon)
Both new variables individually outperform current best variable (EcalE/p)

Both contain different information as well, combination of E/p and DLL works well

Reduction of false positives with a factor of about 2 - 5 (w.r.t EcalE/p)
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