Energy ASIC for ECAL Upgrade II

José Mazorra de Cos David Gascón Fora, Eduardo Picatoste Olloqui

Instituto de Física Corpuscular (CSIC-UV) Institut de Ciències del Cosmos (UB)

ECAL Upgrade II Workshop - 13th December 2022

Introduction

- Energy measurement for ECAL UII following current ICECAL architecture.
- \bullet Resolution of 12bit required with 1V supply \rightarrow noise below 250 $\!\mu V$
 - two parallel processing chains with different gains.
 - internal discriminator for automatic gain selection.
- No dead-time operation with in-channel integration and sampling.
 - dual gated time-interleaved architecture to allow reset time.
 - switching noise \rightarrow differential signal as soon as possible.

Analog Processing

Analog processing chain:

- Input Stage:
 - voltage input mode (high Z)
 - low noise + high bandwidth
 - single ended to differential
 - four independent signal outputs
 - extra discriminator output
- PZ cancellation Shaper:
 - minimize spillover
 - tunable pole and zero
- Integrator:
 - tunable feedback capacitor
- Track & Hold:
 - high slew rate

Synchronization

- Digital conversion syncrhonized from inside the chip.
 - Dedicadted DLL per channel.
- Three separate phases for integrator, track & hold and ADC.
- Predictable subchannel selection after reset/power-up.
- Internal digitization is also considered but low priority.

Specifications

• Initial approach: assume similar specifications as ICECAL.

- Energy range(E_T): 0 10 GeV/c,
- Calibration HG: 20MeV/ADC*,
- Calibration LG: 200MeV/ADC*,
- Dynamic range: 12bit,
- Noise: < 1LSB,
 - *proposal under discussion.

- Shaping: 25*ns*(99% of the charge),
- Spillover residue level: $\pm 1\%$,
- Linearity: < 1%,
- Crosstalk: < 0.5%,
- Termination: High Z,
- Sampling phase tunable per channel with dedicated outputs per block.
- Pedestal subtraction from previous event.
- Data transmission at 40MHz, continuous readout with no deadtime.

- Two gain system requires separate ranges with different calibrations.
- Relative error spikes directly above transition energy (LG side).
 - Low Gain: maximum cell energy for 10GeV E_T with full containment.
 - High Gain: trade off between gain ratio and low energy resolution.
 - Transition: energy value should minimize impact on physics.

• Hierarchical schematic for the energy channel.

Energy Channel Blocks

• Block schematics using ideal blocks (OpAmp macromodel).

- Channel testsbench using PbSPACAL+Poly average pulse shape.
- Issues solving operation point, individual testbenches in progress.

- Tight schedule to arrive to first submission by mid 2023.
- Open issues need to be solved (light yield, PMT circuit, calibration).

PLANNING ASIC and TESTS LHCB_ECAL2		R&T IN2P3		ECAL2 - Upgrade					
	2022	2023	2024	2025	2026	2027	2028	2029	2030
	T1 T2 T3 T4	T1 T2 T3 T4	T1 T2 T3 T4	T1 T2 T3 T4	T1 T2 T3 T4	T1 T2 T3 T4			
Analog and mixed signal design and layout									
Energy Path (Barcelona)									
Preamp on PMT base with clipping / filtering									
Input Stage									
Shaper									
т/н									
ADC 12 bits (TBC)									
Top design and layout (UCLab, Barcelona, Micrhau)									
Basic blocks									
Single channel prototype v1									
Single channel prototype v2									
Multichannel prototype v1									
Multichannel prototype pre-production									
Multichannel prototype production									
Characterization and test									
Basic blocks									
Single channel prototype v1									
Single channel prototype v2									
Multichannel prototype v1									
Multichannel prototype pre-production									
Multichannel prototype production									

Thanks a lot for your attention!