PCIe400 : Development status

IN2P3 Institut national de physique nucléaire et de physique des particules

> Julien Langouët (CPPM) on behalf of the R&T PCIe400 team CENBG, CPPM, IJClab, LAPP, LHCb Online, LPC Caen

Outline

Context and organization

PCIe400 : general characteristics

Technical developments

Planning

Synthesis

Context

Goals and rationale

- Gateway between GBT/lpGBT protocol and standard commercial protocols used in data centers: Ensure a cost effective solution
- Multiplex data from 48 \rightarrow 1 very high bandwidth serial interface
- Event building first stage by taking advantage of power efficient processing resources available
- Generic readout DAQ for multi-context use (Alice, Belle II and CTA)

LHCb Upgrade II (2035)[1]

- New gen DAQ desired on LS3 (2026/2028) and LS4 (2033/2034)
- Data bandwidth requires probably a gain up to x10 compared to Upgrade I
 - Not feasible with current technology
 - Intermediate step : output bandwidth x4, higher processing capacity (~x8)

IN2P3 R&T

- Project set up to develop the prototype of PCIe40 next generation
- Funded for 3 years from 2022 to end of 2024

[1] LHCb Framework TDR, chapter 5, https://cds.cern.ch/record/2776420/files/LHCB-TDR-023.pdf?version=3

PCIe400

FPGA resource comparison

Early Access program granted by Intel

 Weekly followup meeting with Intel engineers

New feature

- HBM / NoC (Network on Chip)
 - Facilitate high-bandwidth data movement between core logic and HBM
 - Deep learning acceleration
 - smartNIC to accelerate and offload certain functions from the server

Foreseen gain (compared to PCIe40)

Processing : factor 8 to 12

	PCIe40	PCIe400
Family	Arria 10	Agilex M-series
Logic elements	1.2 M	3.9 M
DSP	1.5 K	12 K
Frequency (silicon max)	650MHz	1GHz
HBM2e	-	32GB
Hard co- processor	-	Arm Cortex A53 MPCore
Package	2000 pins	4500 pins

Technical developments

Toggle rate estimation

Estimation method

- Power model for Agilex M-series not available before Q4 2022
 - Post fit simulation of firmware with dummy logic and adjustable toggle rate
 - Extrapolation from Agilex I-series on Quartus Power and Thermal Calculator
- Definitive firmware not available for hardware design
 - Use of deployed PCIe40 for LHCb to measure core FPGA current and die temperature
 - Use of Quartus Power analyzer flow to retrofit a mean toggle rate estimation

FPGA Core current (A) PCIe40 for different LHCb subdetector flavors

Toggle rate is typically <12.5%

- 12.5% corresponds to a typical toggle rate (max 15%) considered by Intel
- Simplify the FPGA decoupling scheme as Intel recommendation can be applied with security margin

Power dissipation

Estimation accross whole FPGA

- Preliminary Agilex M-series power model available from Q4 2022
 - 12.5% toggle rate (from previous study)
 - 640MHz (x2 to previous generation)
 - Use of Quartus Power and Thermal Calculator
 - Use of PCIe40 firmware deployed for LHCb to evaluate resource occupation

Worst case:

80% logic

100% RAM

- Definition of a typical and worst case
 - Typical case:
 - 60 % logic
 - 80% RAM
 - 48 links at IpGBT speed
 - Missing HBM use evaluation (WIP)

First estimation give 120 W to > 200 W

- Preliminary models are pessimistic
- Static power increase with T° junction (Tj)
- Dynamic power increase with frequency and toggle rate

Require particular attention on : power integrity and cooling

Power integrity

Power rails

- Between 55 and 100 A I_{core} (worst case)
- > 20 power rails from 0.8 V to 1.8 V
 - Careful power plane design
 - Caution on vias current

Cadence PowerDC / OptimizePI simulations

- Static current analysis
 - Voltage drop and current bottleneck check
- Dynamic current analysis
 - Decoupling capacitor placement check

Planned during routing phase

Current flow simulation illustration

Cooling consideration

Technological study

- 2 Airflow architecture identified
- Few specification on PCIe SIG
 - ambient T° between 20°C and 60°C

Heatsink types

- Comparison with Heatscape models
 - Aluminum base + zipper fins
 - Copper base + zipper fins
 - Vapor chamber + zipper fins
- Vapor chambers has lower heat spread resistance making fins more efficient

Approximate thumb rule

- < 200 W: vapor chamber</p>
- > 200 W: liquid cooling (infrastructure challenge)

Zipper fin

Server architecture (top view)

Heat spread on heatsink base comparsion

Cooling design

Computational Fluid Dynamics (CFD) simulations

- Vapor chamber model construction under COMSOL
 - Rapid geometry variation
 - Optimization of fins height and width
 - Rapid airflow variation

Therma400

- Instrumented mockup board with temperature and anemometers
- Designed for CFD model verification and Prototype heatsink tryout
- FPGA emulation with a heating resistor
- Cabling is undergoing

CFD example illustration

Therma400 synoptic

Prototype heating resistor

Optical interface

Retained solution with CERN consultation

- 4x Amphenol OBT
 - 12 duplex channels
 - ▶ 1.25G to 26.3G
 - 100m OM4, 850nm
 - ▶ MPO x24
- 2x SFP+ for 10GPON / White Rabbit
 - TTC-PON OLT/ONU for fast control
 - White rabbit for clock distribution
- QSFP112
 - ▶ 4x112G PAM4
 - Direct Attach Cable <3m or opto <100m</p>

ont-view
(

	# FE links
No TFC/WR/400GbE	48
WR	47
TTC OLT + ONU	46
TTC OLT + ONU + 400GbE	38

Clock tree

Simplification of PCIe40 clock tree

- 2 external PLL
- No clock buffer or crystal required
 - LHC frequency generated by PLL

New features

- < 100 fs jitter RMS</p>
- Recovered clock feed external PLL to Clean reference clock to transceiver
- Several schemes for phase control
 - Internal to PLL
 - Through DDMTD + internal PLL
 - Through DDMTD + external PLL

Planning

	2022			2023				2024				
Task	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Design						5						
Placing & Routing												
Manufacturing							•					
Definition unitary tests												
Implementation of unitary tests			•									
Prototype Debug												
Qualification & Characterization												
	Prototype available July 2023											
	Routing review internal and Intel March 20 Schematics review internal and Intel January 202											
	Training software framework July 2022											

Schematics almost done

2 prototypes expected for hardware debug

Synthesis

Hardware

- Schematics should be finalized by the end of the year
- Component procurement anticipated
- Several studies undergoing for cooling solution
- 2 prototypes are expected by summer 2023

Firmware and software

- Development starting now for Low Level Interface (LLI)
- Test firmware should be available as soon as prototypes are available
- Virtual mockups are used for development (Eval. cards + USB/I2C bridge)

Generic board with several application possible

- New FPGA features allows to explore new functionalities
 - Integrated network interface (smartNIC)
 - Interconnect network with 400GbE
 - Serial links at 26Gbps and beyond
 - Hard co-processor for fast monitoring
 - ► ...

Target deployment of PCIe400 is during LS3 for new detectors

Backup

Task organization

- Unite the workforce of 5 labs from IN2P3 as well as LHCb online team @CERN
- Overall resource are ~4.5 FTE per year
 - 2 full time engineers + Jean-Pierre Cachemiche (retirement) at CPPM
 - ~2.5FTE distributed over 10 people

Optical interface

Several solution compared

- Anticipated CERN serializer development
 - Transceiver « On-Edge » (QSFP-DD)
 - Clogged I/O braket for airflow
 - Compatibility for custom CERN protocols
 - Firefly Samtec
 - Low channel density (simplex modules)
 - After consulting CERN, retained choice Finisar/Coherent BOA
 - Finally replaced by OBT Amphenol
 - Compatible with Finisar
 - Better technical support
 - Cooling solution
 - Socket reference available

Standard QSFP112 for 400GbE

- MSA task force groups several FF
 - QSFP-DD/QSFP-DD800/QSFP112
- QSFP112 introduced in 2021
 - Proof of concept
 - Cages and Direct Attach Cable available

QSFP-DD 53.125Gb/s PAM4 (lower rate NRZ possible?)

QSFP112 106.25Gb/s PAM4

Samtec FireFly ECUO 14 / 25 / 28 Gb/s NRZ

Coherent / Finisar BOA 1 à 28.1Gb/s NRZ

Amphenol OBT 12 duplex 1.25G à 26.3G NRZ ~6W 3.3V

R&D CERN serializer

WP6 of EP-R&D CERN

- Goals and rationale
 - Higher data transfer rate of serial links
 - Considered solution : Amplitude modulation (PAM4), Wavelength multiplexing (WDM)
 - Higher radiation tolerance for front-end
 - Silicon photonics + WDM because of VCSEL sensibility

Current status

- Technological choices for ASIC DART28 (transceiver/driver SiPh)
 - 25.65Gbps NRZ (multiple LHC bunch Clock)
 - Equivalent FEC to IpGBT
 - 28nm CMOS
 - Prototyping on FPGA
- Probable compatibility with PCIe400 ± WDM demux

Readout card PCIe400

Phase control

Precise phase adjustment

• Frequency increment or decrement during a controlled amount of clock cycles

Exemple : F = 100 MHz δF = 0.010001MHz δT = 1/10000000 − 1/100010001 = 1ps Programming of 100.010001 MHz during 500 cycles → phase shift = 500 ps

PCIe400 : DAQ architecture example

PCIe400 can be used as

- Clock distribution SODIN
- Fast control SOL400
 - To mitigate the fact that only 2SFP+ links, more SOLL400 are required to benefit from WR clock distribution to FE boards
- Readout TELL400

