Upgrade2 ECAL performance with $B^0 \rightarrow \pi^+ \pi^- \pi^0$ D. Manuzzi, S. Perazzini 13th December 2022

Outine

• Introduction

• Highlights of "Homogenous" simulation from Bologna

• $B^0 \to \pi^+ \pi^- \pi^0$ performances

- Figures of merit: Efficiency vs. Significance $(S/\sqrt{S+B})$
- **O** FTDR result
- O Results with variable time resolution
- Results with Dalitz plot requirements

Notivations to study B^0 $\rightarrow \pi^+\pi^-\pi^0$

• Relevant mode to measure the α angle of the Unitarian Triangle

• Complementary to $B \rightarrow \pi\pi, \rho\rho$ analysis

• Opportunity to study the reconstruction of both merged and resolved π^0

- Large increase of comb. bkg. expected in U2 for resolved π^0
- Large benefit expected from timing

Documentation

- LHCb-2003-91: performance of γ and π^0 reconstruction with simulated $B^0 \to \pi^+ \pi^- \pi^0$
- **CERN-THESIS-2013-051**: preliminary study on 2010 data

Origin-vertex simulation

- 1. Pythia is used to generate the primary pp interactions The time spread of the PV is included
- 2. The particle flux at ECAL surface is given by Gauss
 - Geant4 is used to propagate particles inside LHCb
 - All tracked particles are organised depending on their PV

 $B^0 \rightarrow \pi^+ \pi^- \pi^0$ report

3. Luminosity decay

• "*nPVs*" is randomly chosen, depending on the luminosity degradation expected in Run5 conditions

4. PV bootstrap RECYCLE of min. bias MC events

- Events are built merging:
 - 1 signal PV
 - -nPVs 1 not-signal PVs, randomly extracted from a the previously generated PV dataset

E_{ion} [Nev] ECAL simulation

are simulated instead of the detailed geometry of the cells

by Geant4

time spread of the showers are considered

the cell granularities and saved on disc

E_{ion} [Nev]

E_{ion}

|x| < 32 cm |y| < 32 cm |y| < 32 cm |y| < 121 cm |y| < 121 cm |y| < 121 cm |y| < 315 cm |y| < 3

 $B^0 \rightarrow \pi^+ \pi^- \pi^0$ report

Destan	Derec	
Middle	Outer	
Side (<i>R Moli</i> e	e) Side (<i>R Moliere</i>)	
[cm]	[cm]	
ner 6 (3.5)	40 12 (3.5)	Run1 & Up1
ddle 4 (3.5)	60 8 (3.5)	de 2
1ter 4 (3.5)	120 8 (3.5)	Jrac
2 (1.5)	4 (3.5)	Ď

	U2 BASELINE		BETTER OUTER		EVEN BETTER	
egion e index	Run5-op Cell side [mm]	p t.1 $R_{ m M}$ [mm]	Run5-oj Cell side [mm]	pt.2 $R_{ m M}$ $[m mm]$	Run5-op Cell side [mm]	pt.3 $R_{ m M}$ [m mm]
nost0r1le2er4nost5	$ \begin{array}{r} 15 \\ 30 \\ 40 \\ 60 \\ 120 \\ \end{array} $	$ \begin{array}{r} 15 \\ 30 \\ 35 \\ 35 \\ 35 \\ 35 \end{array} $	15 30 40 40 60	$ \begin{array}{c} 15 \\ 30 \\ 35 \\ 35 \\ 35 \\ 35 \end{array} $	15 15 40 40 60	$15 \\ 15 \\ 35 \\ 35 \\ 35 \\ 35$

 $B^0 \rightarrow \pi^+ \pi^- \pi^0$ report

nvariant mass plots

 $B^0 \rightarrow \pi^+ \pi^- \pi^0$ report

Global $B^0 \rightarrow \pi^+ \pi^- \pi^0$ performance

Each point of the curves represents a particular cut on R_t

> **Normalisation:** simulated Run2 performances

 $B^0 \rightarrow \pi^+ \pi^- \pi^0$ report

Performance per region

Signal candidates with final-state γ s hitting different regions are **neglected** (~10%)

 $B^0 \rightarrow \pi^+ \pi^- \pi^0$ report

- Significance denominator: same a previous slide
- Significance numerator: signal yield per region
- Performance benefit from better granularity
- The inner the region, the larger the advantage from better time resolution
- Contribution to reconstructed signals:
 - *Outer* more relevant than *Inner*
 - *InnerMost* almost similar to **OuterMost**

Significance with mixed time resolution

Signal candidates with final-state γ s hitting different regions are **considered**

• $S/\sqrt{S+B}$ is normalised to Run2 total

- Here the R_t cut is optimised independently for each region and time resolution
- Performance degradation with poorer time resolution, <u>but</u>: \circ 15, 30 ps \approx 30, 15 ps \circ 30, 30 ps \approx 15, 50 ps

Dalitz plot per region

- Not all the regions of the Dalitz plane are equally relevant to measure the CPV observables
- This simulation assumes a flat squared-Dalitz model O Higher SIG statistics in the more relevant regions (resonance interference)
- The Dalitz distribution of the BKG could be different from SIG

Dalitz plot performance

• Additional requirement:

To do: enlarge the simulated sample to repeat this study depending on the ECAL region

- $S/\sqrt{S+B}$ is normalised to Run2 total
- The R_t cut is optimised independently for each region and time resolution

No dramatic difference wrt the analysis considering the total **Dalitz plane**

Summary and conclusions

- The $B^0 \to \pi^+ \pi^- \pi^0$ reconstruction performances are an important benchmark for the U2 ECAL
- The current simulation results suggest the critical need of R&D to improve the ECAL reconstruction algorithms in U2
- Analysis of Dalitz region corresponding to $\rho^{\pm}\pi^{\mp}$ final state shows similar performances to the analysis involving in the total Dalitz plane • Requirements on Dalitz quantities reduced quite a lot the statistics. More accurate studies with higher statistics are necessary Necessary to move towards studies on more relevant observables (e.g. *CPV*)

• Degradation of timing performance have not a negligible impact either in outer regions

Backup

Performance per region

Signal candidates with final-state γ s hitting different regions are **neglected** (~10%)

 $B^0 \rightarrow \pi^+ \pi^- \pi^0$ report

$$\delta t = 15 \text{ ps}$$
$$\delta t = 30 \text{ ps}$$
$$\delta t = 50 \text{ ps}$$

- *Eff*_{*i*} and $S_i / \sqrt{S_i + B_i}$ are normalised to Run2 total
- Performance benefit from granularity increase

- The inner the region, the larger the advantage from better time res.
- Performance contribution:
 - Outer > Inner
 - \circ InnerMost \approx OuterMost

