

Enabling Grids for E-sciencE

WMS status

JRA1 All Hands Meeting Catania, 7-9 March 2007

Marco Cecchi – INFN / CNAF

www.eu-egee.org www.glite.org

- Status of the recent WMS 31 tests @ CERN
- Memory management issues (wmp, wm, ctpl)
- Design issues (MM, ISM)
- Bulk Match-Making tests
- WMS requirements and acceptance criteria

Testing WMS 3.1

Enabling Grids for E-sciencE

Ixb7283@CERN (2 CPUs: Intel Xeon 2.80GHz / 4 Gb RAM)

CPU:

Memory:

 Day
 Month
 Year
 Hour
 Minute

 Start time:
 17 ▼ Feb ▼ 2007 ▼ 10 ▼ 38 ▼

 End time:
 23 ▼ Feb ▼ 2007 ▼ 10 ▼ 17 ▼

Swap usage before the suicidal patch:

After the cure:

	Day	Month	Year	Hour	Minute
Start time:	21 🔻	Feb 🔻	2007 🕶	6 🔻	26 🔻
End time:	27 🔻	Feb <u>▼</u>	2007 🕶	19 ▼	26 ▼

Google performance tools

http://code.google.com/p/google-perftools/

- What we usually refer to as 'google malloc'
- They claim this is the fastest malloc ever
- It works well with threads and STL (what we can witness)
 - We have a std::map accessed by several threads
 - Per-thread arenas (std) hold back released memory for later use. Memory blowups that we could have never spot with a profiler follow.
- Perf Tools is distributed under the terms of the BSD License.
- Source code tarball available
- libtcmalloc_minimal.so = 50k (we don't need profiling capabs)

MM performance I

Enabling Grids for E-sciencE

WM_Logfile@lxb7283 from Feb, 23rd 10AM to Mar 3rd 8PM

[root@lxb7283 glite]# grep "MM for job:" workload_manager_events.log1|wc -l

2745

. . .

https://lxb7026.cern.ch:9000/KxQsQq19CnXIkOktSqppAq 3.91 https://lxb7026.cern.ch:9000/roQspp0Guk8bUbI_hr6iQQ 2.58 https://lxb7026.cern.ch:9000/u-LDlwHG-N7hzE3NjARknA 2.56 https://lxb7026.cern.ch:9000/VP_MhFOfkLYCkVgDv6U0eg 3.64 https://lxb7026.cern.ch:9000/u-LDlwHG-N7hzE3NjARknA 2.57 https://lxb7026.cern.ch:9000/jnRt mG-Gurr2vO7AUJoCw 2.59 https://lxb7026.cern.ch:9000/u-LDlwHG-N7hzE3NjARknA 2.57 https://lxb7026.cern.ch:9000/d-2UV-XekWDgLx1dmaCaOQ 2.16 https://lxb7026.cern.ch:9000/SGHhxu6RWqAEc WrxVsrlw 3.42 https://lxb7026.cern.ch:9000/KxQsQq19CnXIkOktSqppAg 2.56 https://lxb7026.cern.ch:9000/Lgk8KmviXsAFiByFlTocsw 2.55 https://lxb7026.cern.ch:9000/6AQyoPnxS WPfc-hPjLxrA 4.29 https://lxb7026.cern.ch:9000/ljMGOxsrBzz6M-dnoqs6yQ 2.55 https://lxb7026.cern.ch:9000/ljMGOxsrBzz6M-dnoqs6yQ 2.54 https://lxb7026.cern.ch:9000/-Xaa-fP2K0x1FKChrh7DAg 3.85 https://lxb7026.cern.ch:9000/-Xaa-fP2K0x1FKChrh7DAg 2.55 https://lxb7026.cern.ch:9000/1NJh2cf3hejX5ziqJsJm0g 3.93 https://lxb7026.cern.ch:9000/HKpwgu8jgywTl1454GUqww 2.58 https://lxb7026.cern.ch:9000/ogyyibw-k7oWQPB6RsXLaw 3.43 https://lxb7026.cern.ch:9000/xzSbUEZVLb_nMmAWgvv3Lg 2.57

=AVERAGE(A1:A2745)

2.82 secs

(estimated to be ~4secs before the latest optimizations)

Even if using collections the impact of the MM performance is reduced by a factor 1 to #clusters (~[10-100]) we are still asked to keep on looking after the MM performance because submission of single jobs or jobs in a high number of clusters might always occur.

MM performance II

Enabling Grids for E-sciencl

Margins are still at reach if we manage to do it in //

- Now it is done sequentially
 - ISM concurrent r/w access by multiple threads
 - intrinsic classad library limitations
 - yet ~3sec/MM is 28.8kjobs/day
 - just recall that DAGless means 28k*100 by the WM (if the others processes keep up)

Bulk Match-Making tests

Abor

536

470

10

Enabling Grids for E-sciencE

Bulk-Match-Making (AKA DAGless) tests

- 5 days uninterrupted submission
- 15 Kjobs/day rate
- hello world jobs with real ATLAS reg's

Proxies expiring after 5 days (on purpose)

Aborts mostly due to proxy expiration

< 0.5% jobs in non-final states Memory usage under control

Load under control

Wmproxy suicidal patch

- Linear growth of memory usage
 - **⇒** memory leaks

- Short-term solution: self-termination of the WMP processes on a given threshold of serving requests.
 - No service interruption
- FCGI does't seem to be surprised so it's the workaround works fine
- The memory leaks (mostly in JDL and gSOAP layers) are under investigation for a long term solution.

DAG counted planner

Enabling Grids for E-science

- Each DAG is managed by a condor_dagman process
- For each node, the planning is done invoking an external program (planner)
 - The planner is memory-hungry
- It's possible to limit the number of concurrently running planners per DAG
- But there is no "condor" way to limit the total number of planners
- Now the real planner is invoked through a proxy executable that first checks the total number of already running planners through the /proc dir

Requirements and Acceptance Criteria

Enabling Grids for E-science

lan Bird, 1st March, 2007

- ..."A single WMS machine should demonstrate submission rates of at least 10K jobs/day sustained over 5 days",...
- That's easily at reach. Also, already proved to be sustainable.
 - ... "This means that issues of memory consumption and growth, file systems filling, etc. must be resolved"...
- (almost?) Done.
 - ATLAS has stability needs to be able to get along with the WMS.
- It's much better now, especially DAGLESS (0.5%) vs DAGMan (5%) collections is proving to be faster and more reliable.
- Modifications are needed and are being applied also to the WMProxy and the User Interface.