22nd Gentner Day, CERN, October 26th 2022

Nuclear Structure Studies With ISOLTRAP

Lukas Nies^{1,2} for the ISOLTRAP Collaboration

¹CERN, Switzerland ²University of Greifswald, Germany

UNIVERSITÄT GREIFSWALD Wissen lockt. Seit 1456

Atomic physics methods probe nuclear properties

Atomic physics methods probe nuclear properties

26/10/2022 slide 3 Lukas Nies

Collaboration

ISOLTRAP

TRAP

Atomic physics methods probe nuclear properties

ISOLDE at CERN

26/10/2022 slide 4

Laser-Ablation Ion Source + Alkali Ion Source 2020

Laser-Ablation Ion Source

L. Nies, in preparation

26/10/2022 slide 7

CÉRN

)TRIP

ISOLTRAP

Collaboration

Multi-Reflection Time-of-Flight Device

Multi-Reflection Time-of-Flight Device

Tandem Penning Trap

26/10/2022 slide 10 ISOL

)TRAP(

(CERN)

100

Lukas Nies

Collaboration

ISOLTRAP

Masses of neutron-deficient indium

Shell evolution around ¹⁰⁰Sn

- Nuclear shell model predicts shell closures (magic numbers)
- Model calculations perform well for closed shells + few nucleons in valence space
- Vicinity of doubly magic N = Z = 50 ¹⁰⁰Sn ideal case for shell model studies
- Neutron deficient In isotopes as ¹⁰⁰Sn core with single p-hole and n or n-holes
- Direct mass-measurements probe:
 - -> single-particle states in ¹⁰⁰Sn
 - -> core-excitation dependent energy shifts
 - -> particle-hole interactions

Lukas Nies

ISOLTRAP

Collaboration

TRA

Masses of neutron-deficient indium

Published in M. Mougeot et al., <u>Nature Physics</u> 17, 1099–1103 (2021) and L. Nies, in preparation

101m,gs**in**

- Resolving power >10⁶ in t_{acc} = 65ms
- Uncertainty < 10 keV
- Agrees with and improves on previous measurements [3-4]

[1] Hinke et al., Nature **486,** 341-345 (2012)

[2] Lubos et al, PRL **122**, 222502 (2019)
[3] C. Hornung *et al.*, Phys. lett. B 802, 135200 (2020)

[4] X. Xu et al., Phys. Rev. C 100(5), 051303(R) (2019)

¹⁰⁰In

- ~ keV precision (90 times more precise)
- PI-ICR study —> No long lived isomers
- Reduction of ¹⁰⁰Sn g.s. mass unc. from **300kev to 240keV**
- Suggests validity of Q-value from [1] over [2]

^{99gs,m}In

- Well separated from contamination, 5x10⁵ mass res. power
- Element ID through laser on/off effect and ToF
- First mass measurement of g.s. and isomer MR-ToF MS

26/10/2022 slide 12

Lukas Nies ISOLTRAP Collaboration

Back to binding energies: Q-value questions...

- Mass of ¹⁰⁰Sn improved by 60 keV based on Q-value to ¹⁰⁰In [1-2]
- in-accurate mass for ¹⁰³Sn derived from Q-values rejected from AME2020
- extrapolated masses yield more consistent behavior
- direct mass-measurement to confirm expected behavior of mass filters

[2] Lubos et al, PRL **122**, 222502 (2019)
[3] M. Mougeot et al., Nature Physics 17, 1099–1103 (2021)

26/10/2022 slide 13

ISOLTRAP Collaboration

What about the moments?

- Magnetic dipole moment very well reproduced by DFT with time-odd fields [1]
- LS-SM nomix unexpectedly more accurate, probably due to effective charge tuning
- Only VS-IMSRG somewhat successful in describing 1/2dipole moment, more moments data to be published soon by CRIS/ISOLDE
- Quadrupole moments reproduced rather well by LSSM and DTF w/ t-odd fields

Modern nuclear theory challenged in "simple" single-particle hole state model for ⁹⁹In

26/10/2022 slide 14

D. Atanasov, K. Blaum, J. Karthein, Yu. Litvinov, D. Lunney, V. Manea, **M. Mougeot, L. Nies, Ch. Schweiger**, L. Schweikhard,

F. Wienholtz, et al.

