

Ultrafast laser processing of inner LHC beam pipe surfaces for secondary electron yield reduction

Elena Bez

CERN, Technology department – vacuum, surfaces & coatings University of Leipzig, Germany

Why Secondary Electron Yield reduction?

Beam pipe

Laser-induced surface roughening

Leibniz-Institut für Oberflächenmodifizierung e.V.

➢ **Variation of laser power, scanning speed and line distance**

Surface requirements for implementation in LHC

➢ **Laser parameters must be tuned to meet surface requirements**

Microstructures

 $acc.$ fluence $=$ *laser* power line distance · scanning speed

Higher accumulated fluence:

- ➢ More material removal
-

➢ Deeper trenches *E. Bez et al., Influence of wavelength and accumulated fluence at picosecond laser-induced surface roughening of copper on secondary electron yield*

Nanostructures

Non-overlapping lines

Overlapping lines

Secondary Electron Yield reduction

Meeting surface requirements

- ➢ Ablation depth ∆z < 25 µm and SEY maximum ≤ 1
- ➢ **Strategy: lower fluences**

Implementation in LHC beam pipes

Scanning strategies

Longline, 4 edges Spiral, 300° Spiral, 4 edges Spiral, 360°

Long treatment and scanning strategies

Very low SEY ≤ **1 on beam pipe surfaces**

Conclusions & Outlook

• **Combination of laser- induced micro- and nanostructures reduced the SEY from 2.2 to 0.7**

- **Higher accumulated fluence leads to:**
	- \triangleright Deeper trenches
	- \triangleright Higher particle density
	- ➢ Low SEY

• **Strategy: Lower acc. fluences on curved surfaces to meet surface requirements (lower particle density, lower ablation depth)**

Surface chemical properties (XPS)

Higher accumulated fluence leads to:

 \triangleright more surface oxidation

 $acc.$ fluence $=$

➢ Gradual transformation: Cu2O -> CuO Cu2O (native) CuO (forms in heated air)

laser power

line distance · scanning speed

Scanning strategies

Ecloud formation in quadrupole

Ecloud formation in dipole

P. Dijkstal, G. Iadarola, L. Mether, and G. Rumolo, Tech. Rep. CERN-ACC-NOTE-2017-0057, CERN, Geneva, Switzerland, (2017).

➢ **Idea: selective laser treatment of high intensity ecloud zones**

Post – treatment cleaning using gas jet

➢ **Loosely bound molten spheres removed with gas jet**

Reduced SEY after post-treatment cleaning

Topography on curved surfaces

Scanning speed: 10 mm/s Average laser power: 3100 mW Acc. Fluence: 700 J/cm²

SEY on curved surface

SEY measurement

Surface morphology 532 nm

Beam Delivery System

Cross-section of the robot

45° mirror *CARTARY STATE* **THE REPORT OF STATE** fibre head region in which the optical element can be moved rotating unit $-70-105$ mm from treated surface at the moment one f=90mm lens close to the fibre head (not the two in the drawing)

