

Ultrafast laser processing of inner LHC beam pipe surfaces for secondary electron yield reduction

Elena Bez

CERN, Technology department – vacuum, surfaces & coatings University of Leipzig, Germany

Why Secondary Electron Yield reduction?

Beam pipe

26/10/2022

Elena Bez | Ultrafast laser processing of inner LHC beam pipe surfaces for SEY reduction

Laser-induced surface roughening

Leibniz-Institut für Oberflächenmodifizierung e.V.

> Variation of laser power, scanning speed and line distance

Surface requirements for implementation in LHC

> Laser parameters must be tuned to meet surface requirements

Microstructures

acc. fluence = $\frac{laser power}{line distance \cdot scanning speed}$

Higher accumulated fluence:

- More material removal
- > Deeper trenches

E. Bez et al., Influence of wavelength and accumulated fluence at picosecond laser-induced surface roughening of copper on secondary electron yield

Nanostructures

Non-overlapping lines

Overlapping lines

Secondary Electron Yield reduction

Meeting surface requirements

- $\succ\,$ Ablation depth $\Delta z < 25~\mu m$ and SEY maximum ≤ 1
- > Strategy: lower fluences

Implementation in LHC beam pipes

Scanning strategies

Longline, 4 edges

Spiral, 300°

26/10/2022

Spiral, 4 edges

Long treatment and scanning strategies

Very low SEY \leq 1 on beam pipe surfaces

Conclusions & Outlook

• Combination of laser- induced micro- and nanostructures reduced the SEY from 2.2 to 0.7

- Higher accumulated fluence leads to:
 - Deeper trenches
 - ➢ Higher particle density
 - Low SEY

• Strategy: Lower acc. fluences on curved surfaces to meet surface requirements (lower particle density, lower ablation depth)

Surface chemical properties (XPS)

Treatment in air

Higher accumulated fluence leads to:

 \blacktriangleright more surface oxidation

 \blacktriangleright Gradual transformation: Cu₂O -> CuO Cu₂O (native) CuO (forms in heated air)

laser power

 $acc.fluence = \frac{1}{line\ distance\ \cdot\ scanning\ speed}$

Scanning strategies

Ecloud formation in quadrupole

Ecloud formation in dipole

P. Dijkstal, G. Iadarola, L. Mether, and G. Rumolo, Tech. Rep. CERN-ACC-NOTE-2017-0057, CERN, Geneva, Switzerland, (2017).

> Idea: selective laser treatment of high intensity ecloud zones

Post – treatment cleaning using gas jet

> Loosely bound molten spheres removed with gas jet

Reduced SEY after post-treatment cleaning

Topography on curved surfaces

Scanning speed: 10 mm/s Average laser power: 3100 mW Acc. Fluence: 700 J/cm²

SEY on curved surface

SEY measurement

Surface morphology 532 nm

Beam Delivery System

Cross-section of the robot

45° mirror The local division in NUMBER OF TAXABLE PARTY. fibre head rotating unit region in which the optical element can be moved ~70-105 mm from treated surface at the moment one f=90mm lens close to the fibre head (not the two in the drawing)

