Theory and Phenomenology II: Overview of Dark Matter and AstroParticle Phenomenology

2023 SAPHIR Annual Research Meeting

Farinaldo Queiroz **SAPHIR & UFRN**

MILLENNIUM INSTITUTE FOR SUBATOMIC PHYSICS **AT HIGH-ENERGY FRONTIER** SAPHIR

Take away messages

Without interdisciplinary searches one cannot claim the discovery of dark matter particles

The progress on the direct, indirect and collider experiments will move at very different paces in the near future

Part of the field is moving to a multifold dark matter search: Direct, indirect, collider, *neutron stars, *gravitational waves ARM 2023

After all, the only thing better than excellent science is creating excellent science with people you like (sometimes with beer and dinner).

After all, the only thing better than excellent science is creating excellent science with people you like (sometimes with beer and dinner).

UNITED STATES

158 Million Pesos

476 Million Pesos

83 Million Pesos (fellowships+per diem)

RCNPq

97 Million Pesos (PhD,Master's)

Evidence for Dark Matter

A brief history of time

Galaxy Rotation Curves

Cosmic Microwave Background

James Peebles

Nobel Prize 2019. I am deeply impressed with the way dark matter has explained cosmological observations.

ARM 2023

In 1970 they measured the velocity of 67 regions in the 2-24kpc of M31 (Andromeda). In 1980 they measured the rotation curves of 21 galaxies.

21 galaxies

Dark Matter accounts for nearly 27% of the energy budget

PLANCK arXiv:1807.06209

ARM 2023

W. Hu, Annals Phys. 303 (2003) 203-225

There is no alternative to dark matter

Black Holes

Particles

 $E_{\rm R} \sim \mathcal{O}(10 \, \rm keV)$

Sub-GeV dark matter? pseudoscalar mediators Non-standard Cosmologies

Lindner, Profumo, Mambrini, FSQ, 1703.07364 Marrodan Undagoitia, Rauch, arxiv:1509.08767

$\frac{dR}{dE}(E,t) = \frac{\rho_0}{m_x \cdot m_A} \cdot \int \mathbf{v} \cdot f(\mathbf{v},t) \cdot \frac{d\sigma}{dE}(E,\mathbf{v}) \, \mathrm{d}^3 \mathbf{v}$

WIMP

 $E_{\rm R} \sim \mathcal{O}(10 \, \rm keV)$

Sub-GeV dark matter? pseudoscalar mediators Non-standard Cosmologies

Lindner, Profumo, Mambrini, FSQ, 1703.07364 Marrodan Undagoitia, Rauch, arxiv:1509.08767

ARM 2023

*Fermi-LAT

CTA

I don't want to run from it

AMS

*Neutrino telescopes

Where are we?

*Fermi-LAT through 2023, possibly will cotinue

Abazajian, Horiuchi, Kaplinghat, Keeley, Macias 2003.10416

Where are we?

It is fair to say that the DM 10-24 interpretation does provide a good fit to the Fermi-LAT data but is disfavored by other probes. The neutron stars interpretation for the GC 10^{-25} excess is debatable

Leane and Slatyer, arXiv:1904.08430

AMS

Our plans are to keep AMS operating on the International Space Station as long as there is a space station.

 $\times \int_{l.o.s} ds$ Dark Matter Distribution

Mauro, Winkler arxiv: 2101.11027

Where are we?

CTA might shed light on the **GeV excess**

arxiv:2212.08080

The CTA design concept :

i) LSTs (Large-Sized Telescopes, 23 m in diameter) E= 20 - 150 GeV,

ii) MSTs (Medium-Sized Telescopes, 11.5 m) E=150 GeV-5 TeV

iii) a large number of SSTs (Small-Sized Telescope, 4 m) E> 5TeV

CTA is expected to improve by 1-2 orders of magnitude the limits (masses > 300GeV)

CTA consortium, arxiv: 2007.16129

Some early studies FSQ, Yaguna, Weniger 1702.06145 FSQ, Yaguna 1511.05967

Where are we?

CTA Hopefully in the coming years

Fortes, FSQ, Siqueira, Viana 2212.05075

Standard Darkness

We often use as evidence for dark matter

Galaxy rotation curves **Cosmic Microwave Background Collision of Clusters Baryon Acoustic Oscillations Gravitational Lensing Cosmic Shear Structure Formation** *Fermi GeV excess *AMS-02 results **Neutrino Masses Lepton Flavor Violation Hierarchy Problem Grand Unification**

Extra

Thermal relic

 $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle \left(n_{\chi}^2 - n_{\chi}^{\text{eq}2} \right)$

ARM 2023

Non-Standard Cosmology

Dark Matter and Early Universe

Taking a very constrained scenario: Z'

$$+ \frac{1}{4} g_X \left(N_{1R} \gamma^{\mu} \gamma_5 N_{1R} \right) Z'_{\mu} - \frac{g_X}{2} Q_{X_f} \left(\bar{\psi}_f \gamma^{\mu} \psi_f \right) Z'_{\mu}$$

Arcadi, Neto, Siqueira, FSQ 2108.11398

PROGRESS IS NEEDED HERE:

Scalar dominates the energy density and decays into radiation

Dark Matter and Neutron Stars

Neutron stars will constitute an important probe!

Maity, FSQ 2104.02700

Dark Matter and the Hubble Rate

 10^{4}

EARLY UNIVERSE	Dataset	102
$H_0 = 70.0 \pm 2.2 km s^{-1} M p c^{-1}$	WMAP9 [12]	10°
$H_0 = 67.36 \pm 0.54 km s^{-1} Mpc^{-1}$	CMB 2018 [4]	x _u
$H_0 = 67.36 \pm 0.54 km s^{-1} Mpc^{-1}$	SPT 2021 [13]	\swarrow 10 ²
$H_0 = 69.72 \pm 1.63 km s^{-1} Mpc^{-1}$	ACT 2019 [14]	fm
$H_0 = 67.9 \pm 1.1 km s^{-1} Mpc^{-1}$	BOSS data [15]	10^{1}
$H_0 = 69.6 \pm 1.8 km s^{-1} Mpc^{-1}$	eBOSS Collab. [16]	
LATE UNIVERSE	Dataset	10 ⁰
$H_0 = 73.8 \pm 2.1 km s^{-1} Mpc^{-1}$	SN1a 2021 [17]	
$H_0 = 75.4 \pm 1.7 km s^{-1} Mpc^{-1}$	Pantheon 2019 [18]	10 ⁻¹
$H_0 = 72.8 \pm 1.9 km s^{-1} M p c^{-1}$	Gaia 2020 [19]	10
$H_0 = 73.2 \pm 1.3 km s^{-1} Mpc^{-1}$	Gaia and HST 2020 [20]	

Connection between early universe and particle physics

Alcaniz, Neto, Silva, FSQ 2211.14345

Non-thermal production of dark matter

Null curvature phantom-like model with $E_{\gamma} \approx E_{\nu}$

Dark Sectors and Accelerators

Search for Dark Sector by Repurposing the UVX Brazilian Synchrotron

L. Duarte (IIP, Brazil), L. Lin (LNLS, Campinas), M. Lindner (Heidelberg, Max Planck Inst.), V. Kozhuharov (Sofiya U. and INFN, Italy), S.V. Kuleshov (Andres Bello Natl. U. and Unlisted, CL) et al. (Jun 10 2022)

#1

Vision for the future

Gravitational Waves

Dark Matter

Early Universe

ARM 2023

Accelerators/ Colliders

New Ideas

(quantum information/superconductors/ new materials)

Neutron Stars Flavor

ATLAS

Gravitational Waves Model Building

Lasers

Gamma-rays

Quantum Information **Neutrino physics**

Cosmology

Superconductors

THANK YOU GO MUCHI

More than Chile, I like the Chilean Physicists

ARM 2023