

http://www.astroparticles.es/

I. Introduction

II. Higher dimensional operators

 $\mathcal{III}.$ Loop models

 $\mathcal{IV}.$ Conclusions

SAPHIR-ARM, La Serena, Chile, Jan 19, 2023 - p.2/31

Introduction

SAPHIR-ARM, La Serena, Chile, Jan 19, 2023 - p.3/31

Neutrino oscillations

BUT, still unknown:

- Absolute mass scale?
- Which hierarchy?
- CP phase?
- Majorana OR Dirac?

Upper limit: ~ 1 eV (KATRIN), ~ (0.1 - 0.2) eV $(0\nu\beta\beta)$ ~ 2 σ preference for NO Indication for $\delta \sim (3/2)\pi$? - But tension T2K/NO ν A

Unknown

 $m_{\nu} \simeq \frac{(Yv)^2}{\Lambda}$

Majorana Neutrino mass

Smallness of neutrino mass can be "explained" by:

 \Rightarrow High scale: Large Λ

Weinberg, 1979

 $m_{\nu} \simeq \frac{(Yv)^2}{\Lambda}$

Majorana Neutrino mass

Smallness of neutrino mass can be "explained" by:

```
⇒ High scale: Large Λ
"classical" seesaw: \Lambda \sim 10^{(14-15)}~{\rm GeV}, Y \sim 1
```


Weinberg, 1979

 $m_{\nu} \simeq \frac{(Yv)^2}{\Lambda}$

Majorana Neutrino mass

Smallness of neutrino mass can be "explained" by:

```
⇒ High scale: Large Λ

"classical" seesaw:

\Lambda \sim 10^{(14-15)} GeV, Y \sim 1

OR:
```


 $\Rightarrow \Lambda \sim 100 \text{ GeV}$ and $Y \sim 10^{-6}$ "electro-weak scale" seesaw:

 $m_{\nu} \simeq \frac{(Yv)^2}{\Lambda}$

Majorana Neutrino mass

Smallness of neutrino mass can be "explained" by:

```
⇒ High scale: Large \Lambda
"classical" seesaw:
\Lambda \sim 10^{(14-15)} GeV, Y \sim 1
OR:
```

 $\Rightarrow \Lambda \sim 100 \text{ GeV}$ and $Y \sim 10^{-6}$ "electro-weak scale" seesaw:

"A right-handed neutrino?" "Heavy neutral lepton?" "A nearly singlet fermion?"

 $m_{\nu} \simeq \frac{(Yv)^2}{\Lambda}$

Majorana Neutrino mass

Smallness of neutrino mass can be "explained" by:

```
⇒ High scale: Large \Lambda
"classical" seesaw:
\Lambda \sim 10^{(14-15)} GeV, Y \sim 1
OR:
```

 $\Rightarrow \Lambda \sim 100 \text{ GeV}$ and $Y \sim 10^{-6}$ "electro-weak scale" seesaw:

See talk by: Giovanna Cottin

Weinberg, 1979

Majorana Neutrino mass generated from an n-loop dimension d diagram:

$$m_{\nu} \simeq \frac{(Yv)^2}{\Lambda} \cdot \boldsymbol{\epsilon} \cdot \left(\frac{Y^2}{16\pi^2}\right)^{\boldsymbol{n}} \cdot \left(\frac{Yv}{\Lambda}\right)^{\boldsymbol{d}-5}$$

Smallness of neutrino mass can be "explained" by:

- ⇒ High scale: Large Λ "classical" seesaw
- \Rightarrow Loop factor: $n \ge 1$
- \Rightarrow Higher order: d = 7, 9, 11
- \Rightarrow Nearly conserved *L*, i.e. small ϵ ("inverse seesaw")
- \Rightarrow + "smallish" $Y (\sim \mathcal{O}(10^{-2} 1)?)$
- ··· or combination thereof

Seesaw variants

Inverse seesaw:

Mohapatra & Valle, 1986 $m_{
u} \propto \mu (yv)^2/M_R^2$

Linear seesaw:

Akhmedov et al. 1995

 $m_{
u} \propto (yv)(y_L v)/M_R^2$

Diagramatically as type-I: Singlet fermionic decomposition but suppression mechanism different !

II.

Higher dimensional operators

SAPHIR-ARM, La Serena, Chile, Jan 19, 2023 - p.10/31

Fixing outside fields yields 3 diagrams:

Dimension-7

d = 7 operator:

 $\mathcal{O}_7 = \frac{1}{\Lambda} L L H H H H^{\dagger}$

Genuine d = 7 model

d=7: Babu, Nandi & Tavartkiladze, 2009 (BNT)

$$\Rightarrow 3_1^F$$
 = Fermionic triplet, hypercharge 1:
 $3_1^F = (F_3^{++}, F_3^+, F_3^0)$

 $\Rightarrow 4^S_{3/2}$ = Scalar quadruplet, hypercharge 3/2 $4^S_{3/2} = (S^{+++}_4, S^{++}_4, S^+_4, S^0_4)$

Genuine d = 7 model

d=7: Babu, Nandi & Tavartkiladze, 2009 (BNT)

$$\Rightarrow 3_1^F$$
 = Fermionic triplet, hypercharge 1:
 $3_1^F = (F_3^{++}, F_3^+, F_3^0)$

 $\Rightarrow 4^S_{3/2}$ = Scalar quadruplet, hypercharge 3/2 $4^S_{3/2} = (S^{+++}_4, S^{++}_4, S^+_4, S^0_4)$

Neutral component of $4_{3/2}^S$ will acquire vev:

$$\langle S_4^0 \rangle \propto \lambda_5 \frac{v^3}{m_S^2}$$

Effectively linear seesaw at d = 7

Tree versus loop

Tree versus loop

 $m_
u \propto rac{v^2}{\Lambda} rac{v^2}{\Lambda^2}$

Tree versus loop

Thus:

$\Lambda \leq 2 \text{ TeV}$

Otherwise loop larger than tree-level contribution! True for all high-d models

 $d \ge 9$

Topologies at d = 9:

d9

Topologies at d = 9:

Anamiati et al. JHEP 1812 (2018) 066

Numbers for tree-level models:

d:	Topologies:	Diagrams:	Genuine:
5	1	3	3
7	5	9	1
9	18	66	2
11	92	504	2
13	576	4199	4

Genuine 'high'-d models

No exotic scalars! Only 3 vector-like fermions: 3^F_1 , $4^F_{1/2}$ and 5^F_0

Genuine 'high'-d models

Neutrino mass suppressed by $m_{\nu} \propto (\frac{v}{\Lambda})^{d-4} v$

All high-d models need large representations: Large x-section at LHC!

Fermion production at LHC

Example diagrams:

pair production

associated production

Fermion production at LHC

Example diagrams:

associated production

LHC @ 13 TeV and 3/ab: $F_5^{++}F_5^{--}$ - 60 events $F_4^{++}F_4^{--}$ - 48 events $F_3^{++}F_3^{--}$ - 40 events for $M_F = 2$ TeV

(before cuts)

BNT at LHC

BNT at LHC

Decay lengths in BNT model, fermions:

Note: \Rightarrow Decay lengths of F_3^{++} , F_3^+ and F_3^0 differ

No upper limit on $c\tau(F_3^0)$

SAPHIR-ARM, La Serena, Chile, Jan 19, 2023 – p.18/31

BNT at LHC

 H^{\dagger} H^{\bullet

Decay lengths in BNT model, fermions:

Note: \Rightarrow Decay lengths of F_3^{++} , F_3^+ and F_3^0 differ

Similar for all high-d models, lightest neutral fermion: $c au \propto 1/m_{
u_1}$!

No upper limit on $c\tau(F_3^0)$

SAPHIR-ARM, La Serena, Chile, Jan 19, 2023 – p.18/31

Loop models

SAPHIR-ARM, La Serena, Chile, Jan 19, 2023 - p.19/31

- 6 topology with
- 1 loops
- 4 external legs

- 6 topology with
- 1 loops
- 4 external legs

But only 4 genuine diagrams:

T-I-1

T-III

L

Bonnet et al. JHEP 07 (2012) 153

Consider one (famous) example:

Consider one (famous) example:

E. Ma, 2006 "scotogenic model" Add Z₂ symmetry loop particles odd S=Scalar, F=Fermion

SAPHIR-ARM, La Serena, Chile, Jan 19, 2023 - p.22/31

Consider one (famous) example:

E. Ma, 2006 "scotogenic model" Add Z₂ symmetry loop particles odd S=Scalar, F=Fermion

Clearly, not the only possibility! One more example:

In general:

. . .

Conditions:

For $SU(3)$:	(i) ${f C_1}\otimes {f c_F}=1\oplus\cdots$	+ (ii) · · ·
For $SU(2)$:	(i) $\mathbf{R_1}\otimes\mathbf{R_F}=2\oplus\cdots$	+ (ii) · · ·
For $U(1)_Y$:	Y - free parameter	

In general:

. . .

Infinite series of models?

Conditions:

For $SU(3)$:	(i) $\mathbf{C_1} \otimes \mathbf{c_F} = 1 \oplus \cdots$	+ (ii) · · ·
For $SU(2)$:	(i) $\mathbf{R_1} \otimes \mathbf{R_F} = 2 \oplus \cdots$	+ (ii) · · ·
For $U(1)_Y$:	Y - free parameter	

In general:

. . .

Conditions:

For $SU(3)$:	(i) ${f C_1}\otimes {f c_F}=1\oplus\cdots$	+ (ii) · · ·
For $SU(2)$:	(i) $\mathbf{R_1} \otimes \mathbf{R_F} = 2 \oplus \cdots$	+ (ii) · · ·
For $U(1)_Y$:	Y - free parameter	

Infinite series of models?

Cutoffs!

(i) Phenomenological constraints (ii) Theoretical

arguments

(i) Phenomenological constraint:

(ii) Theoretical arguments:

SAPHIR-ARM, La Serena, Chile, Jan 19, 2023 - p.24/31

(i) Phenomenological constraint:

No stable charged particles

PDG: No stable, charged relics observed in mass range $M \sim (1 - 10^5) \text{ GeV}$

(ii) Theoretical arguments:

SAPHIR-ARM, La Serena, Chile, Jan 19, 2023 - p.24/31

(i) Phenomenological constraint:

No stable charged particles

PDG: No stable, charged relics observed in mass range $M \sim (1 - 10^5)$ GeV

(a) "Exit" particles

Any particle with linear coupling to two or more SM fields

(b) Dark matter candidate

Any multiplet with neutral state (must be lightest member)

(ii) Theoretical arguments:

J. de Blas et al. 1711.10391 "Granada dictionary"

S. Bottaro et al. 2107.09688 & 2205.04486

(i) Phenomenological constraint:

No stable charged particles

PDG: No stable, charged relics observed in mass range $M \sim (1 - 10^5)$ GeV

(a) "Exit" particles

Any particle with linear coupling to two or more SM fields

(b) Dark matter candidate

Any multiplet with neutral state (must be lightest member)

(ii) Theoretical arguments:

No Landau poles

Adding large multiplets to SM field content one (or more) α_i goes to infinity below M_G

 \cdots others \cdots

J. de Blas et al. 1711.10391 "Granada dictionary"

S. Bottaro et al. 2107.09688 & 2205.04486 Exits

Scalar exits				,					
	$\Theta_3^{(c)}$	$\Theta_1^{(c)}$	$\Xi_1/\Delta^{(a,b)}$	Ξ	arphi	\mathcal{S}_2	\mathcal{S}_1	$\mathcal{S}^{(a)}$	Name
"Exits" appear	$\left(1,4,\frac{3}{2}\right)$	$\left(1,4,\frac{1}{2}\right)$	(1, 3, 1)	(1, 3, 0)	$\left(1,2,\frac{1}{2}\right)$	(1, 1, 2)	(1, 1, 1)	(1, 1, 0)	Irrep
in tree-level									
decompositions			ζ	Π_7	Π_1	ω_4	ω_2	ω_1	Name
of $d = 6$ SMEFT,			$\left(3,3,-\frac{1}{3}\right)$	$\left(3,2,\frac{7}{6}\right)$	$\left(3,2,\frac{1}{6}\right)$	$\left(3,1,-\frac{4}{3}\right)$	$\left(3,1,rac{2}{3} ight)$	$\left(3,1,-\frac{1}{3}\right)$	Irrep
see:									
de Blas et al.,				Φ	Υ	Ω_4	Ω_2	Ω_1	Name
arXiv:1711.10391				$\left(8,2,\frac{1}{2}\right)$	$\left(6,3,\frac{1}{3}\right)$	$\left(6,1,rac{4}{3} ight)$	$\left(6,1,-\tfrac{2}{3}\right)$	$\left(6,1,rac{1}{3} ight)$	Irrep
Fermion exits									
			Σ_1	$\Sigma^{(a)}$	Δ_3	Δ_1	E	$N^{(a)}$	Name
			(1, 3, -1)	(1, 3, 0)	$\left(1,2,-\frac{3}{2}\right)$	$\left(1,2,-\frac{1}{2}\right)$	(1, 1, -1)	(1, 1, 0)	Irrep
		T_2	T_1	Q_7	Q_5	Q_1	D	U	Name
		$(3, 3, \frac{2}{3})$	$(3, 3, -\frac{1}{3})$	$(3, 2, \frac{7}{6})$	$(3, 2, -\frac{5}{6})$	$\left(3,2,\frac{1}{6}\right)$	$(3, 1, -\frac{1}{3})$	$\left(3,1,\frac{2}{3}\right)$	Irrep

Definition: Exit: Particle the couples linearly to 2 (or 3) SM fields

Exits

					,		.,		Scalar exits
Name	$\mathcal{S}^{(a)}$	\mathcal{S}_1	\mathcal{S}_2	arphi	Ξ	$\Xi_1/\Delta^{(a,b)}$	$\Theta_1^{(c)}$	$\Theta_3^{(c)}$	
Irrep	(1, 1, 0)	(1, 1, 1)	(1, 1, 2)	$\left(1,2,\frac{1}{2}\right)$	(1, 3, 0)	(1, 3, 1)	$\left(1,4,\frac{1}{2}\right)$	$\left(1,4,\frac{3}{2}\right)$	"Exits" appear
									in tree-level
Name	ω_1	ω_2	ω_4	Π_1	Π_7	ζ			decompositions
Irrep	$\left(3,1,-\frac{1}{3}\right)$	$\left(3,1,\frac{2}{3}\right)$	$\left(3,1,-\frac{4}{3}\right)$	$\left(3,2,\frac{1}{6}\right)$	$\left(3,2,rac{7}{6} ight)$	$\left(3,3,-\frac{1}{3}\right)$			of $d = 6$ SMEFT,
									see:
Name	Ω_1	Ω_2	Ω_4	Υ	Φ				de Blas et al.,
Irrep	$\left(6,1,\frac{1}{3}\right)$	$\left(6,1,-\tfrac{2}{3}\right)$	$\left(6,1,\frac{4}{3}\right)$	$\left(6,3,\frac{1}{3}\right)$	$\left(8,2,\frac{1}{2}\right)$				arXiv:1711.10391
									-
									Fermion exits
Name	$N^{(a)}$	E	Δ_1	Δ_3	$\Sigma^{(a)}$	Σ_1			
Irrep	(1, 1, 0)	(1, 1, -1)	$\left(1,2,-\frac{1}{2}\right)$	$\left(1,2,-\tfrac{3}{2}\right)$	(1,3,0)	(1, 3, -1)			Arbeláez et al.;
									arXiv:2205.13063
Name	U	D	Q_1	Q_5	Q_7	T_1	T_2		406 models
Irrep	$\left(3,1,\frac{2}{3}\right)$	$\left(3,1,-\frac{1}{3}\right)$	$\left(3,2,\frac{1}{6}\right)$	$\left(3,2,-\frac{5}{6}\right)$	$\left(3,2,rac{7}{6} ight)$	$\left(3,3,-\frac{1}{3}\right)$	$\left(3,3,\frac{2}{3}\right)$	wi	th "exit" particles

Definition: Exit: Particle the couples linearly to 2 (or 3) SM fields

DM candidates

The list of possible DM multiplets is finite:

Cirelli et al., 2006 Bottaro et al., 2021 Bottaro et al., 2022

 \Rightarrow Cross-section for reproducing $(\Omega h^2)_{DM}$ violates unitarity for n > 13

DM candidates

The list of possible DM multiplets is finite:

 \Rightarrow Cross-section for reproducing $(\Omega h^2)_{DM}$ violates unitarity for n > 13

Perturbativity

Still 724 = 406 + 318 models! - Can we reduce that number?

Perturbativity

Still 724 = 406 + 318 models! - Can we reduce that number?

Add condition that models should be perturbative up to GUT scale Putting scale of new physics to $\Lambda = 1$ TeV for this plot:

 $\begin{array}{l} \Lambda_{LP}:\\ \text{energy scale, where}\\ \text{one } \alpha_i > (4\pi) \end{array}$

Numbers correspond to model numbers in tables

Accepting this condition:

 \Rightarrow only 57 models out of 406 survive - exit class \Rightarrow only 59 out of the 318 survive - DM class

Unification

One more curious comment:

 \Rightarrow Only one of all models unifies gauge couplings above $E = 10^{15}$ GeV

 \Rightarrow 12 more models "unify" but at low energy (proton decay!)

$\mathcal{IV}.$

2-loops, 3-loops, 4-loops

SAPHIR-ARM, La Serena, Chile, Jan 19, 2023 - p.29/31

$\mathcal{IV}.$

2-loops, 3-loops, 4-loops

Unfortunately ... No time!

Ask me offline, if you are interested.

SAPHIR-ARM, La Serena, Chile, Jan 19, 2023 - p.29/31

Conclusions

- \Rightarrow Tree-level d = 5 seesaw simplest possibility for Majorana m_{ν}
- \Rightarrow Higher-dimensional tree-level models require low scale Λ Advantage: testable!
- \Rightarrow Loop models: Many phenomenologically consistent models exist. Can we cut down number?

Conclusions

- \Rightarrow Tree-level d = 5 seesaw simplest possibility for Majorana m_{ν}
- \Rightarrow Higher-dimensional tree-level models require low scale Λ Advantage: testable!
- \Rightarrow Loop models: Many phenomenologically consistent models exist. Can we cut down number?

 \Rightarrow Long way to go to identify origin of neutrino mass!

Conclusions

"When you have eliminated all which is impossible, then whatever remains, however improbable, must be the truth"

Arthur Conan Doyle