Next generation cosmological analysis with nested sampling

Will Handley
wh260@cam.ac.uk
Royal Society University Research Fellow \& Turing Fellow Astrophysics Group, Cavendish Laboratory, University of Cambridge Kavli Institute for Cosmology, Cambridge
Gonville \& Caius College
github.com/williamjameshandley/talks
willhandley.co.uk

$8^{\text {th }}$ September 2022
The
Alan Turing Institute

Overview

- DiRAC 2020 RAC allocation of 30MCPUh
- Main goal: Planck Legacy Archive equivalent
- Parameter estimation \rightarrow Model comparison
- MCMC \rightarrow Nested sampling
- Planck \rightarrow \{Planck, DESY1, BAO, ...\}
- Pairwise combinations
- Suite of tools for processing these
- anesthetic 2.0
- unimpeded 1.0
- zenodo archive
- MCMC chains also available.
- Work in progress, but beta testers requested (email wh260@cam.ac.uk)

The three pillars of Bayesian inference

Parameter estimation

What do the data tell us about the parameters of a model?
e.g. the size or age of a ^CDM universe

$$
\begin{aligned}
P(\theta \mid D, M) & =\frac{P(D \mid \theta, M) P(\theta \mid M)}{P(D \mid M)}, & P(M \mid D)=\frac{P(D \mid M) P(M)}{P(D)}, \\
\mathcal{P} & =\frac{\mathcal{L} \times \pi}{\mathcal{Z}}, & \frac{\mathcal{Z}_{\mathcal{M}} \Pi_{\mathcal{M}}}{\sum_{m} Z_{m} \Pi_{m}}, \\
\text { Posterior }= & \frac{\text { Likelihood } \times \text { Prior }}{\text { Evidence }} . & \text { Posterior }=\frac{\text { Evidence } \times \text { Prior }}{\text { Normalisation }} .
\end{aligned}
$$

Model comparison

How much does the data support a particular model? e.g. $\Lambda C D M$ vs a dynamic dark energy cosmology

Tension quantification

Do different datasets make consistent predictions from the same model? e.g. CMB vs Type IA supernovae data

$$
\mathcal{R}=\frac{\mathcal{Z}_{A B}}{\mathcal{Z}_{A} \mathcal{Z}_{\mathcal{B}}},
$$

$$
\begin{aligned}
\log \mathcal{S}= & \left\langle\log \mathcal{L}_{A B}\right\rangle_{\mathcal{P}_{A B}} \\
& -\left\langle\log \mathcal{L}_{A}\right\rangle_{\mathcal{P}_{A}} \\
& -\left\langle\log \mathcal{L}_{B}\right\rangle_{\mathcal{P}_{B}}
\end{aligned}
$$

Occam's Razor [2102.11511]

- Bayesian inference quantifies Occam's Razor:
- "Entities are not to be multiplied without necessity"
- William of Occam
- "Everything should be kept as simple as possible, but not simpler"
- "Albert Einstein"
- Properties of the evidence: rearrange Bayes' theorem for parameter estimation

$$
\mathcal{P}(\theta)=\frac{\mathcal{L}(\theta) \pi(\theta)}{\mathcal{Z}} \quad \Rightarrow \quad \log \mathcal{Z}=\log \mathcal{L}(\theta)-\log \frac{\mathcal{P}(\theta)}{\pi(\theta)}
$$

- Evidence is composed of a "goodness of fit" term and "Occam Penalty"
- RHS true for all θ. Take max likelihood value θ_{*} :

$$
\log \mathcal{Z}=-\chi_{\min }^{2}-\text { Mackay penalty }
$$

- Be more Bayesian and take posterior average to get the "Occam's razor equation"

$$
\log \mathcal{Z}=\langle\log \mathcal{L}\rangle_{\mathcal{P}}-\mathcal{D}_{\mathrm{KL}}
$$

- Natural regularisation which penalises models with too many parameters.

Kullback Liebler divergence

- The KL divergence between prior π and posterior \mathcal{P} is is defined as:

$$
\mathcal{D}_{\mathrm{KL}}=\left\langle\log \frac{\mathcal{P}}{\pi}\right\rangle_{\mathcal{P}}=\int \mathcal{P}(\theta) \log \frac{\mathcal{P}(\theta)}{\pi(\theta)} d \theta .
$$

- Whilst not a distance, $\mathcal{D}=0$ when $\mathcal{P}=\pi$.
- Occurs in the context of machine learning as an objective function for training functions.
- In Bayesian inference it can be understood as a log-ratio of "volumes":

$$
\mathcal{D}_{\mathrm{KL}} \approx \log \frac{V_{\pi}}{V_{\mathcal{P}}}
$$

(this is exact for top-hat distributions).

Why do sampling?

The cornerstone of numerical Bayesian inference is working with samples.

- Generate a set of representative parameters drawn in proportion to the posterior $\theta \sim \mathcal{P}$.
- The magic of marginalisation \Rightarrow perform usual analysis on each sample in turn.
- The golden rule is stay in samples until the last moment before computing summary statistics/triangle plots because

$$
f(\langle X\rangle) \neq\langle f(X)\rangle
$$

Generally need $\sim \mathcal{O}(12)$ independent
 samples to compute a value and error bar.

The Planck legacy archive

Planck collaboration science products

- distributed cosmology inference results as MCMC chains
- Across a grid of:
- subsets/combinations of Planck data
- TT, lowl, lowE, lensing
- ^CDM extensions
- base, mnu, nrun, omegak, r
- importance sampling across some other likelihoods (BAO, JLA,...)
- Cannot compute evidences in high dimensions from MCMC chains
- Only parameter estimation
- no model comparison

MCMC

Nested sampling

MCMC

- Single "walker"

Explores posterior

- Fast, if proposal matrix is tuned
- Parameter estimation, suspiciousness calculation
- Channel capacity optimised for generating posterior samples

Nested sampling

- Ensemble of "live points"
- Scans from prior to peak of likelihood
- Slower, no tuning required
- Parameter estimation, model comparison, tension quantification
- Channel capacity optimised for computing partition function

The grid (so far)

- Models: [$\left.\Lambda \mathrm{CDM}, \Omega_{K}, \nu, r, w, w(a)\right]$
- Data: [plik, camspec, DESY1, bicep+keck, BAO(DR16), pantheon]
- Pairwise combinations of datasets
- Breakdown of Planck \& BAO data
- Samplers: [Metropolis Hastings MCMC, Nested Sampling]
- These exhaust what is currently available by default in cobaya
- Wide priors to allow for importance readjustment as desired
- roughly halfway through computational allocation.
- Feedback desirable as to what extensions to the grid would be of community interest (email wh260@cam.ac.uk).
- Further checking needed before first release by end of this year.

unimpeded

Universal Model comparison and Parameter Estimation Distributed over Every Dataset

- Python tool for seamlessly downloading and cacheing chains
- Data stored on zenodo
hdf5 storage for fast \& reliable download \& storage
- Library of trained bijectors to be used as priors/emulators [2102.12478]/nuisance marginalised likelihoods [2207.11457]
- anesthetic compatible for processing of chains [1905.04768]
α-testers wanted! (email wh260@cam.ac.uk)
- End goal - community library which everyone contributes to so expensive runs reusable.

```
from unimpeded import Unimpeded
store \(=\) Unimpeded (cache='data. hdf5')
samps \(=\) store ('planck')
samps. H0. plot.kde_1d()
samps \(=\) store('planck', model='klcdm')
samps.H0.plot.kde_1d()
```


The importance of global measures of tension

- Hubble tension [1907.10625]
- Planck: $H_{0}=67.4 \pm 0.5$
- SH H_{0} ES: $H_{0}=74.0 \pm 1.4$
- In other situations the discrepancy doesn't exist in a single interpretable parameter
- For example: DES + Planck [1902.04029]
- Are these two datasets in tension?
- There are a lot more parameters - are we sure that tensions aren't hiding? Are we sure we've chosen the best ones to reveal the tension?
- Should use "Suspiciousness" statistic \mathcal{S}, or Bayes ratio \mathcal{R} to determine global tension.

The importance of global measures of tension

Hubble tension [1907.10625]

- Planck: $H_{0}=67.4 \pm 0.5$
- SH $H_{0} \mathrm{ES}: H_{0}=74.0 \pm 1.4$
- In other situations the discrepancy doesn't exist in a single interpretable parameter
- For example: DES + Planck [1902.04029]
- Are these two datasets in tension?
- There are a lot more parameters - are we sure that tensions aren't hiding? Are we sure we've chosen the best ones to reveal the tension?
- Should use "Suspiciousness" statistic \mathcal{S}, or Bayes ratio \mathcal{R} to determine global tension.

The DES evidence ratio R

- The Dark Energy Survey [1708.01530] quantifies tension between two datasets A and B using the Bayes ratio:

$$
R=\frac{\mathcal{Z}_{A B}}{\mathcal{Z}_{A} \mathcal{Z}_{B}}=\frac{P(A \cap B)}{P(A) P(B)}=\frac{P(A \mid B)}{P(A)}=\frac{P(B \mid A)}{P(B)}
$$

where \mathcal{Z} is the Bayesian evidence.

- Many attractive properties:
- Symmetry
- Parameterisation independence
- Dimensional consistency
- Use of well-defined Bayesian quantities
- R gives the relative change in our confidence in data A in light of having seen B (and vice-versa).
- $R>1$ implies we have more confidence in A having received B.
- Like evidences, it is prior-dependent from \mathcal{D} in $\log \mathcal{Z}=\langle\log \mathcal{L}\rangle_{\mathcal{P}}-\mathcal{D}$
- Increasing prior widths \Rightarrow decreasing evidence.
- Increasing prior widths \Rightarrow increasing confidence.

The DES evidence ratio R : Prior dependency

- What does it mean if increasing prior widths \Rightarrow increasing confidence?
- Wide priors mean a-priori the parameters could land anywhere.
- We should be proportionally more reassured when they land close to one another if the priors are wide

How do we deal with the prior dependency in R ?

Option 1 Take the Bayesian route, accept the prior dependency, and spend time trying to justify why a given set of priors are "physical".
Option 2 Try to find a principled way of removing this prior dependency

- Decompose ratio using Occam's Razor equation $\log \mathcal{Z}=\langle\log \mathcal{L}\rangle_{\mathcal{P}}-\mathcal{D}$

$$
\begin{aligned}
\log R & =\log \mathcal{Z}_{A B}-\log \mathcal{Z}_{A}-\log \mathcal{Z}_{A} \\
& =\left\langle\log \mathcal{L}_{A B}\right\rangle_{\mathcal{P}_{A B}}-\left\langle\log \mathcal{L}_{A}\right\rangle_{\mathcal{P}_{A}}-\left\langle\log \mathcal{L}_{B}\right\rangle_{\mathcal{P}_{B}}-\mathcal{D}_{A B}+\mathcal{D}_{A}+\mathcal{D}_{B} \\
& =\log \mathcal{S}+\log \mathcal{I}
\end{aligned}
$$

where we have defined the suspiciousness S, which is prior independent, and the information \mathcal{I}, which depends on the parameter compression of the shared space

- Focussing on the prior-independent portion \mathcal{S} gives R for the "Narrowest reasonable priors" which do not impinge on the posterior
- One of the critical observations is that one can only hide tension by widening priors. Narrowing them will only ever show tension if it is present.

Suspiciousness S

- For a Gaussian set of posteriors:

$$
\log \mathcal{S}=\frac{d}{2}-\frac{1}{2}\left(\mu_{A}-\mu_{B}\right)\left(\Sigma_{A}+\Sigma_{B}\right)^{-1}\left(\mu_{A}-\mu_{B}\right)
$$

- The Malhanobis term is suggestive, so we can use this to calibrate a "sigma" level of tension using a χ^{2} distribution for $\chi_{d}^{2}=d-2 \log \mathcal{S}$, or a tension probability.
- S is composed of evidences \mathcal{Z} and KL divergences \mathcal{D}, which are Gaussian-independent concepts, so the only thing to determine is d, the "number of shared parameters".
- Can do this with Gaussian dimensionality $\frac{d}{2}=\operatorname{var}_{\mathcal{P}}(\log \mathcal{L})$ [1903.06682]

$$
\begin{aligned}
\text { Planck vs BAO : } & p=42 \pm 4 \% \\
\text { Planck vs DESY1: } & p=3.2 \pm 1.0 \% \\
\text { Planck vs } \mathrm{SH}_{0} \mathrm{ES}: & p=0.25 \pm 0.17 \%
\end{aligned}
$$

- Under this metric, $\mathrm{SH}_{0} \mathrm{ES}$ is unambiguously inconsistent, although not quite as brutal as $>4 \sigma$. BAO is consistent, and DESY1 is inconsistent, but only just. This is pleasingly similar to ones intuition.

Curvature tension? [1908.09139]

- If you allow $\Omega_{K} \neq 0$, Planck (plikTTTEEE) has a moderate preference for closed universes ($50: 1$ betting odds on), $\Omega_{K}=-4.5 \pm 1.5 \%$ [1911.02087]
- Planck+lens+BAO strongly prefer $\Omega_{K}=0$.
- But, Planck vs lensing is 2.5σ in tension, and Planck vs BAO is 3σ.
- Reduced if plik \rightarrow camspec [2002.06892]
- BAO and lensing summary assume \wedge CDM.
- Doing this properly with BAO retains preference for closed universe (though closer to flat $\Omega_{K}=-0.4 \pm 0.2 \%$) [2205.05892]
- Present-day curvature has profound consequences for inflation
[2205.07374]

Curvature tension? [1908.09139]

- If you allow $\Omega_{K} \neq 0$, Planck (plikTTTEEE) has a moderate preference for closed universes ($50: 1$ betting odds on), $\Omega_{K}=-4.5 \pm 1.5 \%$ [1911.02087]
- Planck+lens+BAO strongly prefer $\Omega_{K}=0$.
- But, Planck vs lensing is 2.5σ in tension, and Planck vs BAO is 3σ.
- Reduced if plik \rightarrow camspec [2002.06892]
- BAO and lensing summary assume Λ CDM.
- Doing this properly with BAO retains preference for closed universe (though closer to flat $\Omega_{K}=-0.4 \pm 0.2 \%$) [2205.05892]
- Present-day curvature has profound consequences for inflation
[2205.07374]

Will Handley wh260@cam.ac.uk

Curvature tension? [1908.09139]

- If you allow $\Omega_{K} \neq 0$, Planck (plikTTTEEE) has a moderate preference for closed universes (50:1 betting odds on), $\Omega_{K}=-4.5 \pm 1.5 \%$ [1911.02087]
- Planck+lens+BAO strongly prefer $\Omega_{K}=0$.
- But, Planck vs lensing is 2.5σ in tension, and Planck vs BAO is 3σ.
- Reduced if plik \rightarrow camspec [2002.06892]
- BAO and lensing summary assume Λ CDM.
- Doing this properly with BAO retains preference for closed universe (though closer to flat $\Omega_{K}=-0.4 \pm 0.2 \%$) [2205.05892]
- Present-day curvature has profound consequences for inflation
[2205.07374]

Conclusions

- DiRAC RAC allocation for building a legacy grid of
- MCMC \& Nested sampling chains
- gridded over (pairwise) up-to-date datasets
- gridded over extensions to ^CDM
- Bijectors \& emulators for fast re-use
- Importance sampling toolkit via anesthetic for (re)processing
- Long-term goal: community repository of chains to share model comparison compute resource
- Looking for:
- α-testers for unimpeded
- Suggestions for more datasets (and their incorporation into cobaya)

