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Overview

▶ DiRAC 2020 RAC allocation of 30MCPUh

▶ Main goal: Planck Legacy Archive equivalent

▶ Parameter estimation → Model comparison

▶ MCMC → Nested sampling

▶ Planck → {Planck,DESY1,BAO, . . .}
▶ Pairwise combinations
▶ Suite of tools for processing these

▶ anesthetic 2.0
▶ unimpeded 1.0
▶ zenodo archive

▶ MCMC chains also available.

▶ Work in progress, but beta testers requested
(email wh260@cam.ac.uk)
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The three pillars of Bayesian inference

Parameter estimation

What do the data tell us
about the parameters of a
model?
e.g. the size or age of a
ΛCDM universe

P(θ|D,M) =
P(D|θ,M)P(θ|M)

P(D|M)
,

P =
L × π

Z ,

Posterior =
Likelihood× Prior

Evidence
.

Model comparison

How much does the data
support a particular model?
e.g. ΛCDM vs a dynamic
dark energy cosmology

P(M|D) =
P(D|M)P(M)

P(D)
,

ZMΠM∑
m ZmΠm

,

Posterior =
Evidence× Prior

Normalisation
.

Tension quantification

Do different datasets make
consistent predictions from
the same model?
e.g. CMB vs Type IA
supernovae data

R =
ZAB

ZAZB
,

logS = ⟨logLAB⟩PAB

−⟨logLA⟩PA

−⟨logLB⟩PB

Will Handley <wh260@cam.ac.uk> 3 / 17

mailto:wh260@cam.ac.uk


Occam’s Razor [2102.11511]

▶ Bayesian inference quantifies Occam’s Razor:
▶ “Entities are not to be multiplied without necessity” — William of Occam
▶ “Everything should be kept as simple as possible, but not simpler” — “Albert Einstein”

▶ Properties of the evidence: rearrange Bayes’ theorem for parameter estimation

P(θ) =
L(θ)π(θ)

Z ⇒ logZ = logL(θ)− log
P(θ)

π(θ)

▶ Evidence is composed of a “goodness of fit” term and “Occam Penalty”

▶ RHS true for all θ. Take max likelihood
value θ∗:

logZ = −χ2
min −Mackay penalty

▶ Be more Bayesian and take posterior average
to get the “Occam’s razor equation”

logZ = ⟨logL⟩P −DKL

▶ Natural regularisation which penalises models with too many parameters.
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Kullback Liebler divergence

▶ The KL divergence between prior π and
posterior P is is defined as:

DKL =

〈
log

P
π

〉
P
=

∫
P(θ) log

P(θ)

π(θ)
dθ.

▶ Whilst not a distance, D = 0 when P = π.

▶ Occurs in the context of machine learning as
an objective function for training functions.

▶ In Bayesian inference it can be understood as
a log-ratio of “volumes”:

DKL ≈ log
Vπ

VP
.

(this is exact for top-hat distributions).
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Why do sampling?

▶ The cornerstone of numerical Bayesian
inference is working with samples.

▶ Generate a set of representative parameters
drawn in proportion to the posterior θ∼ P.

▶ The magic of marginalisation ⇒ perform
usual analysis on each sample in turn.

▶ The golden rule is stay in samples until the
last moment before computing summary
statistics/triangle plots because

f ( ⟨X ⟩ ) ̸= ⟨ f (X ) ⟩

▶ Generally need ∼ O(12) independent
samples to compute a value and error bar.
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The Planck legacy archive

▶ Planck collaboration science products

▶ distributed cosmology inference results as
MCMC chains

▶ Across a grid of:
▶ subsets/combinations of Planck data

▶ TT, lowl, lowE, lensing

▶ ΛCDM extensions
▶ base, mnu, nrun, omegak, r

▶ importance sampling across some other
likelihoods (BAO, JLA,. . . )

▶ Cannot compute evidences in high
dimensions from MCMC chains
▶ Only parameter estimation
▶ no model comparison
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MCMC

▶ Single “walker”

▶ Explores posterior

▶ Fast, if proposal matrix is tuned

▶ Parameter estimation, suspiciousness
calculation

▶ Channel capacity optimised for generating
posterior samples

Nested sampling

▶ Ensemble of “live points”

▶ Scans from prior to peak of likelihood

▶ Slower, no tuning required

▶ Parameter estimation, model comparison,
tension quantification

▶ Channel capacity optimised for computing
partition function
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The grid (so far)

▶ Models: [ΛCDM,ΩK , ν, r ,w ,w(a)]

▶ Data: [plik, camspec, DESY1, bicep+keck, BAO(DR16), pantheon ]

▶ Pairwise combinations of datasets

▶ Breakdown of Planck & BAO data

▶ Samplers: [Metropolis Hastings MCMC, Nested Sampling]

▶ These exhaust what is currently available by default in cobaya

▶ Wide priors to allow for importance readjustment as desired

▶ roughly halfway through computational allocation.

▶ Feedback desirable as to what extensions to the grid would be of community interest
(email wh260@cam.ac.uk).

▶ Further checking needed before first release by end of this year.
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unimpeded
Universal Model comparison and Parameter Estimation Distributed over Every Dataset

▶ Python tool for seamlessly downloading and
cacheing chains

▶ Data stored on zenodo

▶ hdf5 storage for fast & reliable download &
storage

▶ Library of trained bijectors to be used as
priors/emulators [2102.12478]/nuisance
marginalised likelihoods [2207.11457]

▶ anesthetic compatible for processing of
chains [1905.04768]

▶ α-testers wanted! (email wh260@cam.ac.uk)

▶ End goal – community library which everyone
contributes to so expensive runs reusable.

from unimpeded import Unimpeded
s t o r e = Unimpeded ( cache=’ data . hdf5 ’ )
samps = s t o r e ( ’ p l anck ’ )
samps .H0 . p l o t . kde 1d ( )
samps = s t o r e ( ’ p l anck ’ , model=’ klcdm ’ )
samps .H0 . p l o t . kde 1d ( )
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The importance of global measures of tension

▶ Hubble tension [1907.10625]
▶ Planck: H0 = 67.4± 0.5
▶ SH0ES: H0 = 74.0± 1.4

▶ In other situations the discrepancy doesn’t
exist in a single interpretable parameter

▶ For example: DES+Planck [1902.04029]

▶ Are these two datasets in tension?

▶ There are a lot more parameters – are we
sure that tensions aren’t hiding? Are we sure
we’ve chosen the best ones to reveal the
tension?

▶ Should use “Suspiciousness” statistic S, or
Bayes ratio R to determine global tension.

0.18 0.24 0.30

Ωm

0.75

0.90

1.05

σ
8

DES

Planck
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The DES evidence ratio R

▶ The Dark Energy Survey [1708.01530] quantifies tension between two datasets A and B
using the Bayes ratio:

R =
ZAB

ZAZB
=

P(A ∩ B)

P(A)P(B)
=

P(A|B)
P(A)

=
P(B|A)
P(B)

where Z is the Bayesian evidence.

▶ Many attractive properties:
▶ Symmetry
▶ Parameterisation independence
▶ Dimensional consistency
▶ Use of well-defined Bayesian quantities

▶ R gives the relative change in our confidence
in data A in light of having seen B (and
vice-versa).

▶ R > 1 implies we have more confidence in A
having received B.

▶ Like evidences, it is prior-dependent
from D in logZ = ⟨logL⟩P −D

▶ Increasing prior widths ⇒ decreasing
evidence.

▶ Increasing prior widths ⇒ increasing
confidence.
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The DES evidence ratio R: Prior dependency

σ
8

log R = 2.93± 0.39

Ωm

log R = 0.50± 0.35 log R = −1.89± 0.29

▶ What does it mean if increasing prior widths ⇒ increasing confidence?

▶ Wide priors mean a-priori the parameters could land anywhere.

▶ We should be proportionally more reassured when they land close to one another if the
priors are wide
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How do we deal with the prior dependency in R?

Option 1 Take the Bayesian route, accept the prior dependency, and spend time trying
to justify why a given set of priors are “physical”.

Option 2 Try to find a principled way of removing this prior dependency

▶ Decompose ratio using Occam’s Razor equation logZ = ⟨logL⟩P −D

logR = logZAB − logZA − logZA

= ⟨logLAB⟩PAB
− ⟨logLA⟩PA

− ⟨logLB⟩PB
−DAB +DA +DB

= logS + log I
where we have defined the suspiciousness S , which is prior independent, and the
information I, which depends on the parameter compression of the shared space

▶ Focussing on the prior-independent portion S gives R for the “Narrowest reasonable
priors” which do not impinge on the posterior

▶ One of the critical observations is that one can only hide tension by widening priors.
Narrowing them will only ever show tension if it is present.
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Suspiciousness S

▶ For a Gaussian set of posteriors:

logS =
d

2
− 1

2
(µA − µB)(ΣA +ΣB)

−1(µA − µB).

▶ The Malhanobis term is suggestive, so we can use this to calibrate a “sigma” level of
tension using a χ2 distribution for χ2

d = d − 2 logS, or a tension probability.
▶ S is composed of evidences Z and KL divergences D, which are Gaussian-independent

concepts, so the only thing to determine is d , the “number of shared parameters”.
▶ Can do this with Gaussian dimensionality d

2 = varP(logL) [1903.06682]
Planck vs BAO : p = 42± 4%

Planck vs DESY1 : p = 3.2± 1.0%

Planck vs SH0ES : p = 0.25± 0.17%

▶ Under this metric, SH0ES is unambiguously inconsistent, although not quite as brutal as
> 4σ. BAO is consistent, and DESY1 is inconsistent, but only just. This is pleasingly
similar to ones intuition.
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Curvature tension? [1908.09139]

▶ If you allow ΩK ̸= 0, Planck (plikTTTEEE)
has a moderate preference for closed
universes (50:1 betting odds on),
ΩK = −4.5± 1.5% [1911.02087]

▶ Planck+lens+BAO strongly prefer ΩK = 0.

▶ But, Planck vs lensing is 2.5σ in tension,
and Planck vs BAO is 3σ.

▶ Reduced if plik → camspec [2002.06892]

▶ BAO and lensing summary assume ΛCDM.

▶ Doing this properly with BAO retains
preference for closed universe (though closer
to flat ΩK = −0.4± 0.2%) [2205.05892]

▶ Present-day curvature has profound
consequences for inflation [2205.07374]
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Conclusions

▶ DiRAC RAC allocation for building a legacy grid of
▶ MCMC & Nested sampling chains
▶ gridded over (pairwise) up-to-date datasets
▶ gridded over extensions to ΛCDM
▶ Bijectors & emulators for fast re-use
▶ Importance sampling toolkit via anesthetic for (re)processing
▶ Long-term goal: community repository of chains to share model comparison compute resource

▶ Looking for:
▶ α-testers for unimpeded
▶ Suggestions for more datasets (and their incorporation into cobaya)
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