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|. Abstract and main references:

Abstract : Introducing modified measures redefines the scalar field potentials while providing spontaneous breaking
of scale invariance. In this way one can obtain potentials with two flat regions, one suitable for inflation and the
other suitable for the late universe. With two scalar fields the scalar potential can have three flat regions after
spontaneous symmetry breaking, one for inflation and the other two for the late universe, showing the possibility of
early dark energy, which has been invoked for the resolution of the HO tension. Other phenomena present in the
modified measures theory, like dark energy from fermions the avoidance of the 5t force problem and the justification
in terms of modified measure theory of the the phenomenological model of Afshordi et. al. for the resolution the HO
tension will be discussed.
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II. GRAVITY-MATTER FORMALISM WITH
TWO INDEPENDENT NON-RIEMANNIAN

) VOLUME-FORMS
In this form, the action is given by | o o
The funections €4 5 take over the role of the stan-
B 4 (1) dard Riemannian integration measure density de-
5= fd r®1(A) [H + L ]_'_ fined as /=g = \/—det ||g,.| and it is expressed
®(H) (1) in terms of the space-time metric g,,.
f 2 0a(B)[L + R + =] |
v Y

where the following notations are used:

The functions R = ¢g"" R,.(I') and R,.(I") corre-
spond to the scalar curvature and the Ricei tensor

in the first-order (Palatini) formalism,
¢ The quantities ®4(A) and ®5(B) are two indepen-
dent non-Riemannian volume-forms, i.e., generally
covariant integration measure densities on the un-
derlying space-timne manifold and are given by:
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where the scalar potential V' is given by

Vigr,02) = fre ™7 4 gre” 272, (5)

and the another scalar potential is defined as

Ulpr,pa) = fae 2% 4 gae 22292, (6)

where the quantities fy, fa, g1, 2,00 and o are pos-
itive parameters.

e The function ®(H) denotes the dual field strength
of a third auxiliary 3-index antisymmetric tensor
gauge field:

1

B(H) = "0,y (7)



We mention the scalar potentials V' and U have been
chosen in such a way that the action given eq.(1) is in-
variant under global Weyl-scale transformations:
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¥y

1
02 = @2+ — I\, Aypr = M , O
(o

2
B — A BPM v Hypne = Hyp

Note that this combination is invariant o,y — asps —
4Py — fialgg, from eq.(8). Additionally, we observe that
the requirement about the global Weyl-scale symmetry
(8) uniquely fixes the structure of the non-Riemannian-
measure gravity-matter action given by eq.(1).

In the following we will use e = 0 and this case the
equations of motion resulting from the variation of (1)
w.r.t. affine connection I'!, | are

&y
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Therefore, I'Y, corresponds to a Levi-Civita connection
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w.r.t. to the Weyl-rescaled metric g,,.:

Jur = X1 9 and x, = 214) :
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Also, from the variation of the action (1) w.r.t. auxil-
iary tensor gauge fields A,,,. B, and H,,, yields the
equations, we have

0 [R+ L] =0, aiuﬂ+%%%}=m
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whose solutions are given by

®2(B) 1 (2) , 2(H)
=y2. R+LW=-M, L%+ —==-M.
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Here the quantities M, Ms and y2 are integration con-
stants. However, the constants My and M> are arbitrary
and dimensional and y» arbitrary and dimensionless.

Einstein frame

We mention that the integration constant y; in eq.(13)
preserves global Weyl-scale invariance in eq.(8), whereas
the appearance of the another integration constants
M, M5 signifies dynamical spontaneous breakdown of
global Weyl-scale invariance under (8) due to the scale
non-invariant solutions in eq.(13).




Also, varying the action (1) w.r.t. g, and using rela-
tions (13) we have

X1 [Ruu‘*'% (H;WL“} - I;iij)] - % [TEJ‘*'H#H M>—2R R#“]

(14)
where y, and ys are defined in (11), and the guantities
Tﬁi’gj correspond to the energy-momentum tensors of the
scalar field Lagrangians with the standard definitions:

(1.2) _ (1.2) _ i (1,2)
T = guvL 2 ﬂg#“L . (15)
Now, taking the trace of eq.(14) and using again sec-
ond relation of eq.(13), we find that the scale factor vy
becomes

T4
XU=2RTm 12 — M,

(16)

where T(1:2) = grv (2
Thus, considering the second relation of eq.(13) to-
gether with eq.(14), we obtain the Einstein-like form
L ! (1) L () (1)
Ry = 59uR = g0 (L + M) + 5 (7Y — g LD)

X2 [g2) \
e 162 + g MAP)

In this context, we can bring eqs.(17) into the standard
form of Einstein equations for the metric g, ie. the
Einstein-frame gravity equations

1 1
Ry (9) = 590 R(3) = 5T} (18)

in with the energy-momentum tensor (analogously to

(15))
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where the effective Einstein-frame scalar field La-
grangian:

Lo = %{L[” M+ f L@ 4]}, (0

where L2} represent Lagrangian densities defined as
LYW=y (X;+X)-V , LP=vU, (21)

with the potentials V' and U as in relations (3)-(4). Also,
to write L.g in terms of the Einstein-frame metric g, we
consider the short-hand notation for the kinetic terms

L_ .. 1_..
X = —EH” P10, Xo = —EH“ ap‘af’zausﬂz- (22)

By combining egs.(16) and (19), and taking into ac-
count (21), we obtain

2x2|U + My
A=W ML)




From eqs.(23) and (20), we find at the explicit form for
the Einstein-frame scalar Lagrangian L g

LEH = Xl + XE - UEH{{FII'.- {}53} ] {24]

in which the effective scalar potential U.g(y1,p2) be-
comes

V — M)
Uett (01, 02) = ‘: )
dyo [U + ME]
2 (25)
{'f-le-ai':lﬂl + HIE-EI':F"B - Ml} - I

N 4o [IEE-Enupi + ggﬂ-iﬂlﬂhgﬂ <+ Mﬂ] .

We refer that choosing the “wrong” sign of the scalar
potential U (Eq.(4)) in the initial non-Riemannian-
measure gravity-matter action (1) is necessary to end up
with the right sign in the effective potential (25) associ-
ated to scalar fields  and s in the physical Einstein-

Y <10

frame effective gravity-matter action given by eq.(24). 1o

On the other hand, the overall sign of the other ini- FIG. 1: The effective potential with three flat regions. One
tial scalar pﬂtEﬂtiﬁl V {Eq.[4}} is in fact irrelevant since flat region refers to the inflationary phase and the other
L‘h&ﬂgiﬂg its S.igﬂ does not alter the I}nﬂiti?it}' of efective region refers to dark energy. The third could be another early

pﬂtEﬂtiﬂl E:l b}’ eq. {25}. dark energy phase.Here we have used a positive value for M,



III. FLAT REGIONS OF THE EFFECTIVE
SCALAR POTENTIAL

A. Flat Regions values

We mention that the important feature of the effec-
tive potential Uy (see eq.(25)) is the presence of three
infinitely large flat regions — for large positive values of
the fields ¢ and @2, For large positive values of ¢ and
wa. we have for the effective potential reduces to

M2

_ 26
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For the case in which we only have large negative ;:
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In the other flat region in which we only have large neg-
ative a:

Uett (91, 92) = Ul ) = (27)
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Fig 1 shows a qualitative example for the three fat re-
gions. The flat regions (26), (27) and (28) correspond
to the evolution of the early and the late universe, re-
spectively, provided we choose the ratio of the coupling
constants in the original scalar potentials versus the ratio
of the scale-symmetry breaking integration constants to

Uetr (01, p2) = U[{,?Q—F—DD} = (28)
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which makes the vacuum energy density of the early uni-
verse U, 4y much bigger than that of the late universe.

On the other hand, from the cosmological perturba-
tions together with the Planck data [82-87], we have that
the first flat region of the effective potential is approxi-
mately

Utgay ~ M2 [x2Ms ~ 672 r Ps ~ 1075 (30)

(in units of M3;). where the r denotes the tensor to scalar
ratio and Ps corresponds to the scalar power perturba-
tion. Let us recall that, since we are using units where
GNewton = 1/167, in the present case the Planck mass
Mp; = v ]-J{STTGNethm = ﬁ

In order to study the dynamics of the universe, we
consider that the metric corresponds to the standard fat
Friedmann-Lemaitre-Robertson-Walker space-time met-
ric given by:

ds* = —df* + a*(t) [dr® + r3(d6® + sin® 0d6?)|,  (31)

where a(t) denotes the scale factor. Thus, the associ-
ated Friedmann equations (recall the presently used units
GNewton = 1/167) result

a 1 s 1 _a
E__E{p_'l_gp} * H _EP s :E! {32}
where H is the Hubble parameter. Also, the quantities p
and p are defined as

1 .2 1 .2

P = E ia':ll +§ ijjg +UEH{SG‘1:~ “;'2} 3 (33}
1 .2 1 .2 )

p=73%1+5 ¥ —Uer (01, 92), (34)

and denote the total energy density and pressure of the
scalar fields ¢, = () and ws = wo(t), respectively.



B. Slow Roll approximation

In the context of the slow roll inflation, we can intro-
duce the standard “slow-roll” parameters |27, 28]

Dividing these two equations we get a relation between
the scalar fields ¢ and s given by,

¥l

H ©o
E= ——, =—-———, and =-——, (38
T m H o, T2 H oy (38)

and under the slow-roll approximation =, 1y and g < 1,
thus one ignores the terms with #1.9, so that the w1, Pa-
equations of motion together with the second Friedmann
eq.(32) simplify to:

3H ¢, +Ueg /O =~ 0, 3H ©3 +Uegr [ Dz =~ 0,

1 (39)
HE = EUEH .

Since now the fields ¢, and @5 evolve on the first Hat
region of U.g for large positive values (20), we can con-
sider that the effective potential during inflationary sce-
nario can be approximated to,

M3Z = 2M,(fie~ o191 4 gre—a2¥e)
‘1}(21":_{2

Uesslpr,p2) = - (40)

Here we have used the expansion of the effective potential
given eq.(25) .

In the following we will introduce the number of
e—folds N defined as N = In(a/as) where ay corresponds
to the scale factor at the end of the inflation, that is, at
the end of inflation N = 0. Thus, from eqs.(39) and (40)
can be rewritten as,

dyt - 6Miovy fr e ¥ (1)
dN [ﬂfg — 2M;(fre~ 1% 4 gye—=2v2)]’
and
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Notice that the symmetry breaking constants M, and
M; dropped from this equation. The integration of this
equation introduces a new constant of integration C

2
gM1FL — gf—lzé e™¥r 4 (44)
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In the following we will consider that the integration con-
stant C' = (0.

Now, we can redefine two new scalar fields ¢ and ¢,
in terms of the scalar fields ¢ and a2, such that

_ “’1‘:5'12 ﬂz;?z. and g — “’2‘:5'12"" fl1;92_ (45)
oy + 05 oy + 5
Thus, this transformation is orthogonal, ¢3 + ¢3 = $7 +
3, where ¢ is invariant and ¢, transforms under a scale
transformation.

Notice that in this case, the scale invariant combina-
tion ar1p1 — aapa gets determined, which corresponds to
fixing the scalar field ¢ defined in (45), this scalar field
is scale invariant and is given by

1 2
o = In lflfx;:| — constant.  (46)

v u:il + (.‘tg g1oes

(43)



We will not review all the inflationary aspects of
this model because this conference emphasizes
the late universe, however the inflation is unified
with the late universe and the slow roll inflation
trajectory determines the vacuum of the

late universe!!

Notice that the slow roll trajectory defined by (46)
which for a given constant defines a straight line in the
(1.9) plane in the top vacuum and for another con-
stant defines another parallel line in the top vacuum. We
can then choose the line we desire so as to fall in one of
the two lower vacuua from the top vacuum.



V. EVOLUTION TO DARK ENERGY AND
DARK MATTER

In this section we will analyze the evolution of the dark
energy and dark matter as a remnant of the early uni-
verse. After the inflation period has ended there must
be a period of particle creation that will produce dark
matter as well as ordinary matter. this can be achieved
in many different even in the case of one scalar field cou-
pled to different measures [92]. In this section we add
now a dark matter particles contribution, defined in a
scale invariant form by the matter action defined as

Sm = ]{*1’1 + be®1?2 /= g) L d*z, (66)

where b,, is a constant that defines the strength to the
coupling of ¢ to y/—g, coupling to ®2 does not give a
physically different situation, since still ®5 and /=g are
proportional. Also, the matter Lagrangian density L, is
given by

_ dz® dx? 84z — z;(N))
L = - Tri; .hﬂbz i L 2 ! (L)t

(67)
here the constants 1 and &2 satisfy the condition of scale
invariance and the quantity m; denotes the mass param-
eter of the *i-th" particle. This invariace determines the
coupling constants to be equal to k; = —73124_%% and

1
K2 = —5K1.

Under these conditions the presence of matter induces
a potential for the scalar field ¢ since there is a scalar
field dependence ¢ which multiplies a “density of mat-
ter ‘contribution which is ¢ independent. The scalar
field ¢ dependence is of the form,

(e~ %1929, + b, e35192,/—q). (68)
Such potential is extremized by the condition
Dy — b e v—g=10, (69)

interestingly enough the same condition eliminates all
kind of non canonical anomalous effects, like the appear-
ance of pressure in the contribution to the energy mo-
mentum from the particles, see section (VII). Also the
constraint equation that was used to determine the ratio
of the measures ®; and /=g becomes unaffected by the
presence of the dust when the condition above (69) is sat-
isfied, see section (VII}, so we can use equation (23) and
in the late universe, neglecting My and Ms, we obtain an
equation that determines ¢. Analogous effects were rec-
ognized in a scale invariant two measure model of gravity,
matter and one scalar field in [93] to obtain the avoidance
of the Fifth Force Problem. which the ¢-, the “dilaton™,
could possibly cause, since it is a massless field. Here the
the avoidance of the Fifth Force Problem is also achieved



field ¢, adjusts itself so as to satisfy the above equation.
In this context, we find that the equation for ¢, is given
by

o : of =91

- L
2x2 fae Vattel + 2x2g2€ /oites
= -m.fl +bm911‘-‘" ﬂf+ﬂ§-¢'l1‘

(70)

Thus, eq.(70) determines the value of ¢ to be a given
constant solving this equation and then the velocity of the
scalar field ¢ is zero i.e. ¢ = 0. In order to determine
ﬂzj o9
the value of the scalar field ¢ we consider x = eV aita

then Eq.(70) can be rewritten as

Ei.'||-2+-r.\|:E

212921'2 —bpgir 1 =byfir+2x2fa =0, (71)

interestingly enough, the field ¢y drops from this equa-
tion. This is quite reasonable since the field ¢s under-
goes a shift under the scale transformation, so if we were
to determine the field ¢s ., that would correspond to a
breaking of scale invariance, but now we are working in a
phase with exact scale invariance, since we are neglecting
the scale symmetry breaking constants M and Ms. The
field ¢2 is decoupled from matter, which is a consequence
of the elimination of the 5th force .

In order to obtain a solution for the scalar field ¢, from
eq.(70) or (71) we consider that for very large value of
¢ or equivalently x — oo the dominate terms of eq.(71)
are

iu:svn-%

Exgygi'z—bmgﬂ' “1  ~ 0, then :;r:w(

2}(2.9'2 ) [ﬂl.-"ﬂzji
Hlbm ..

(72)
where for consistency, we must choose the quantity
(x292/g1bm) — oo, Here the value of the scalar field
¢ at this point is

I:.-":]'lr_-‘i-,'l ~
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Now in the region in which the scalar field ¢ —+ —oc

or ¥ — (0 we have that the dominant terms are

2x2f2
flbm

— b fir+ 2xofa ~0, and x ~ ( ) =0, (74)

and the value of the scalar field at this point is

\ff.tz +ﬂ2 EXEIE
I1.'1]’1.[—,1 ~ :.E% : ln[flbm . {?5}

In what follows of this section we study the dynam-
ics of the dark energy and as defined before, with the
equations for the ratio of the two measures obtained in
the absence of dark matter (23) still being valid, so we



VII. CONDITIONS FOR CANONICAL DUST
BEHAVIOR BEYOND THE BACKGROUND
CASE

In our previous considerations we have only considered
cases where the scalar fields and the dust are distributed
homogeneously in the Universe and we have also chosen
the scalar field ¢, by the observation that the presence
of matter induces a potential for the scalar field ¢9 since
there is a scalar field dependence ¢ which multiplies a
“density of matter”contribution which is ¢2 independent
and the result of such minimization lead us to a value of
o1 defined by eq. (69), which in turn lead us to a dust
behavior for our model of point particles coupled in a
scale invariant fashion. Here we will go a bit deeper, fol-
lowing the method studied in [93] for a single scalar field

The gravitational equations take the standard GR form

G.uu {ﬁn .'3}

ETH{f ._ (106)

where (G (§ag) is the Einstein tensor in the Riemannian
space-time with the metric g,,,. The components of the
effective energy-momentum tensor are as follows

_ M P
reff - 2 _ _ . 31”1!:’ T+ bgpeE _
Toa (ﬁ"-l’l - ynn-"fl) (f.ilz - mez) + Goo |Ueppldr, @23 x1, My, M3) + mu|, (107)
21 /X1
and
g h Foq b
eff .- - - xie 2 —b,eT -
L7 = (@1kdrn — guXa) + (P2kd20 — G Xa2) + Grt [Uepp(dr, d2, x1, My, M) + mn| . (108)
2 A .-"X1
Z o oU In the above equations, the scalar field y; is determined
n(T) = f—é = Ti(A), (104) a. [vV=55"" eff  asa function y1(¢1. 2, 72) by means of the following con-
= S —g§"" D, 02| + g Yilgh, @2, 1) by 15 " OWIng colr
7 vl . [ g ] dcha straint:
where g3y = det(gy). We transform to the Einstein Yie e~ sfa _ ey "y
frame wi?{irc this tr;:mfnrmatiun causes the transforma- = K X1¢ bme T . X1 (My + V) = 2xa(U + M) _ Xae T b m
tion of the particle density 2v/x1 (x1)? o 2/X1 ’
a(F) = (x1)~ ¥ n(@). (105) (112)



Therefore General Relativity is restored for
HIGH MATTER DENSITIES.

In summary a "miracle 7 takes place here, the same com-
2 . s il Bl : 2
bination y,e~ "2 — b,,e™ 2 appears in the right hand

side of equations (112), (111) and in the anomalous pres-
sure contribution produces by the dust displayed in (108).

- R K1 i o ,
I'he vanishing of vie™ "2 — b e~ 7 was also obtained
X1 Tt

in our simplified considerations in eq. (69) from the con-
dition of minimization of the matter induced potential
for @2, which (111) expresses in its full generality.
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1. UACDM COSMOLOGY

In this section, we propose a cosmological model which is a
natural consequence of iiber-gravity model. According to Fig.
2, we see that the iber-gravity leads to a very simple model

for the gravity as

- R = -H.;] P < Piber
Gravity = 5
e {iCDH P > Piiber ) General Relativity is restored for HIGH MATTER DENSITIES

which we call 1ACDM. In this scenario, if matter density
P = paber then it sees pure GR with a cosmological constant,
while if p << piher then the metric is constrained to have con-
stant Ricci scalar 1.e. Hp, which is a free parameter in our
model presented in Eq.(4). We should mention that the above
argument does not depend on the radiation content of the uni-
verse since the radiation is trace-free and has no contribution
to our conclusion based on Fig. 2.

The sharp transition in our model 1s representative of a fam-



THEIR PROPOSED ACTION FOR LOW DENSITY

scalar-tensor action representing the cosmological era after
the transition in iiber-gravity:

|
- — d*rv/—q [{ (R — Rq) — ,x] + Lo, (10
(EOM) for this action are:
Hab : A 5B
o TE(‘H_ -HLJJ T ?.fjnh_I_Effﬂh o [?ﬂ?-ﬁl o ﬂn-’;D]E :'Hﬂ-f-'-fr:h-

(11)
BR—Ry=0. (12)



heir formulation for low density is exactly a two
measure theory where the modfied measure

couples to R and the equation R= M= constant
is obtained obtained naturally.

Also there is no need to suddenly change theory for high density, since
the modified measure theory automatically reverts to General

Relativity for high density.
Thank you for your attention !!!




