How to address tensions in cosmology by

$$
\begin{aligned}
& \text { modified gravity with } 2 \text { dof } \\
& \text { Antonio De Felice }
\end{aligned}
$$

Yukawa Institute for Theoretical Physics, YITP, Kyoto U.
Tensions in Cosmology, Corfu, Sept. 9, 2022
[with A. Doll, K-i. Maeda, S. Mukohyama, M. Pookkillath] [follow-up of enjoyable Shinji M's talk]

Experimental puzzle

- Different experiments give different values for today's value of the Hubble parameter in the context of ^CDM
- The experiments \& hypothesis are correct: so there exists $\mathrm{H}(\mathrm{z})$ which fits all the correct experiments and $\wedge C D M$ is ruled out
- There is no $\mathrm{H}(\mathrm{z})$ which can fit all the

Planck coll., 2018 experiments: experiments or/\& [e.g. hom./iso.] hypothesis are wrong

Which $\mathrm{H}(\mathrm{z})$?

- In the context of a dyn. PF fluid component $\rho+P>0 \wedge c_{s}^{2}=\frac{\dot{p}}{\dot{\rho}}>0$ as to avoid ghost or gradient instabilities
- Previous implies $\dot{H}<0$
- Also need to keep control/screen extra degrees of freedom [solar system constraints, fifth force experiments, etc.]
- How to have an instability free arena on which to test $\mathrm{H}(\mathrm{z})$?

A second cosmological tension?

- The universe might be too thin
- Early time \& late time experiments seem to show tension in the parameter S_{8}
- $S_{8}=\sigma_{8}\left(\Omega_{m} / 0.3\right)^{0.5}=0.759_{-0.021}^{+0.024} \quad$ From KiDS-1000, arXiv:2007.15633
- Here tension seems to be in the growth of perturbation
- Could both of cosmology's big puzzles share a single fix?

VCDM Lagrangian

[ADF, Doll, Mukohyama 2020 + Shinji M's talk]

- Introduce the Lagrangian (via Legendre transf)

$$
\mathscr{L}_{\text {ot }}=\frac{M_{P}^{2}}{2} N \sqrt{\gamma}\left[K_{i j} K^{i j}-K^{2}+R-2 V(\phi)\right]-\frac{3 M_{p}^{2}}{4} N \sqrt{\gamma} \lambda^{2}-M_{P}^{2} N \sqrt{\gamma} \lambda(K+\phi)-\sqrt{\gamma} \lambda_{g f} D^{2} \phi+\mathscr{L}_{S M}
$$

- Here we have introduced 2 fcs $f_{0}=f_{, \phi}, f_{1}=f_{, \psi}$, but $V \propto \tilde{\Lambda} /\left(f_{1} f_{0}^{3 / 2}\right)$
- Theory with only 2 dof in gravity [ϕ does not propagate]
- No need to screen extra dof! [e.g. GR static BHs solutions]
- Not equivalent to cuscuton theory

Reconstructing $\mathrm{V}(\phi)$

- We have the choice of one free function $V(\phi(t))$
- $2^{\text {nd }}$ Friedmann eq. $\frac{d \phi}{d N}=\frac{3}{2} \frac{\rho+P}{H M_{P}^{2}}, \quad \rho=\sum_{I} \rho_{1}-\frac{3 M_{P}^{2} K}{a^{2}}, P=\sum_{I} P_{I}+\frac{M_{P}^{2} K}{a^{2}}, N=\ln \left(a / a_{0}\right)$
- Given a $H(N)>0$ and $\rho(N), P(N)$ and $\rho+P>0$, integrate to find $N=N(\phi)$, [where ρ, P is sum over all SM matter fields]
- From $1^{\text {st }}$ Friedmann $V=\frac{\phi^{2}}{2}+\frac{\rho(N(\phi))}{M_{P}^{2}}$ reconstruct V
- Arena to attack H0-tension: only requirement $\mathrm{H}>0$

VCDM phenomenology

[ADF, Maeda, Pookkillath, Mukohyama (2022)]

- Any positive $H(z)$ can be given [no ghost or gradient inst]. H-arena: possible to address H0 tension
- "Wild," possible modifications of H(z) [at any redshift]
- If experiments \& hypothesis are correct there exists $H(z)$ fitting all the data
- If such an $\mathrm{H}(\mathrm{z})$ exists (and $\mathrm{H}(\mathrm{z})>0$) then VCDM solves the H0-tension
- If not, namely there is no $\mathrm{H}(\mathrm{z})$ fitting the data, then experiments \&/or hypothesis are wrong
- Given

$$
\frac{H^{2}}{H_{0}^{2}}=\Omega_{\mathrm{m} 0}(1+z)^{3}+\Omega_{\mathrm{r} 0}(1+z)^{4}+\left(1-\beta_{H}^{2}\right) \frac{1+\tanh \left(\frac{A_{2}-z}{A_{3}}\right)}{1+\tanh \left(\frac{A_{2}}{A_{3}}\right)}+\beta_{H}^{2}\left(1-\frac{\Omega_{\mathrm{m} 0}}{\beta_{H}^{2}}-\frac{\Omega_{\mathrm{r} 0}}{\beta_{H}^{2}}\right)
$$

- Leading to two effective Ccs (early \& late times)

Experiments	Λ CDM	VCDM	Iow-z ($\Delta \chi^{2}$)	VCDM high-z ($\Delta \chi^{2}$)
Planck_highl_TTTEEE	2354.01	2349.56	(4.45)	2347.03 (6.98)
Planck_lowl_EE	397.37	395.92	(1.45)	395.83 (1.54)
Planck_lowl_TT	22.16	22.89	(-0.73)	23.25 (-1.09)
Pantheon	1027.28	1031.64	(-4.36)	1027.31 (-0.03)
bao_boss_dr12	4.79	5.38 (-	-0.59)	9.27 (-4.48)
bao_smallz_2014	3.14	5.31	-2.17)	4.58 (-1.44)
absolute_M	11.47	6.57	4.9)	6.85 (4.62)
H_{0} (SH0ES)	8.54	3.31	5.23)	4.34 (4.2)
H_{0} (H0LiCOW)	4.69	1.88	2.81)	2.43 (2.26)
H_{0} (MEGAMASER)	2.25	1.04	1.21)	1.29 (0.96)
Total	3835.71	3823.50	(12.21)	3822.19 (12.51)
Table I: Comparison of effective χ^{2} between VCDM and Λ CDM for individual data sets.				
	VCDM low $-z$		VCDM high $-z$	Λ CDM
Parameters	95\% limits		95\% limits	95% limits
β_{H}	$0.947_{-0.037}^{+0.031}$		≤ 0.80	-
A_{2}	$0.295_{-0.052}^{+0.086}$		$1.82_{-0.93}^{+0.69}$	-
$10^{2} \omega_{\mathrm{b}}$	$2.254_{-0.032}^{+0.022}$		$2.240_{-0.024}^{+0.034}$	$2.270_{-0.029}^{+0.023}$
$\tau_{\text {reio }}$	$0.054_{-0.013}^{+0.018}$		$0.053_{-0.014}^{+0.017}$	$0.061_{-0.017}^{+0.015}$
n_{s}	$0.9677_{-0.0769}^{+0.0771}$		$0.9664_{-0.009}^{+0.008}$	$0.9736_{-0.0076}^{+0.0066}$
$10^{10} A_{s}$	$3.043_{-0.028}^{+0.036}$		$3.044_{-0.032}^{+0.032}$	$3.052_{-0.036}^{+0.031}$
H_{0}	$70.83_{-1.13}^{+1.07}$		$70.49_{-1.09}^{+1.11}$	$69.40_{-0.8}^{+0.76}$
Ω_{m}	$0.282_{-0.009}^{+0.011}$		$0.2865_{-0.0097}^{+0.0096}$	$0.2899_{-0.0092}^{+0.0101}$
M	$-19.34_{-0.03}^{+0.03}$		$-19.34_{-0.03}^{+0.03}$	$-19.37_{-0.02}^{+0.02}$

Addressing H_{0} \& $\mathrm{S}_{8}(\mathrm{I}):$ VCCDM

- Extend VCDM construction for dark matter
- Introduce standard matter fields with standard actions
- Dark sector consisting of CC and dust in the new frame
- Doing so DM breaks 4d diffeo
- SM doesn't

Lagrangian of VCCDM
 [ADF, Mukohyama 2021 + Shinji M's talk]

- If DM is a pressureless dust

$$
\begin{gathered}
\mathscr{L}_{\text {tot }}=\frac{M_{P}^{2}}{2} N \sqrt{\gamma}\left[K_{i j} K^{i j}-K^{2}+R-2 V(\phi)\right]-\frac{3 M_{P}^{2}}{4} N \sqrt{\gamma} \lambda^{2}-M_{P}^{2} N \sqrt{\gamma} \lambda(K+\phi)-\sqrt{\gamma} \lambda_{\text {gf }}^{i} \partial_{i} \phi \\
+\mathscr{L}_{S M}\left[g_{\mu v}, \chi_{S M}\right]+\mathscr{L}_{D M}\left[g_{\mu v}^{e f f}, \chi_{D M}\right]
\end{gathered}
$$

- For instance DM action via a scalar field

$$
N_{e f f}=\frac{N}{f_{1}}, N_{e f f}^{i}=N^{i}, \quad \gamma_{i j}^{e \text { eff }}=\frac{\gamma_{i j}}{f_{0}}, \quad \mathscr{L}_{D M}=-\frac{1}{2} \sqrt{-g^{e f f}} \rho\left(g_{e f f}^{u v} \partial_{\mu} \sigma \partial_{v} \sigma+1\right)
$$

General framework

[ADF, S. Mukohyama, 2021]

- Standard matter coupled with ADM metric

$$
g_{\mu v} d x^{\mu} d x^{v}=-N^{2} d t^{2}+\gamma_{i j}\left(d x^{i}+N^{i} d t\right)\left(d x^{j}+N^{j} d t\right)
$$

- 3D scalar ϕ and two functions $f_{1}(\phi), f_{2}(\phi)$
- Introduce effective metric felt by DM

$$
g_{\mu \nu}^{e f f} d x^{u} d x^{v}=-\frac{N^{2}}{f_{1}^{2}} d t^{2}+\frac{\gamma_{i j}}{f_{0}}\left(d x^{i}+N^{i} d t\right)\left(d x^{j}+N^{j} d t\right)
$$

Similar to coupled DE: Wetterich (1995); Amendola (2000); Damour Gibbons, Gundlach (1990); Fuzfa, Alimi (2006);
Amendola, Tsujikawa (2020)

Reconstructions of H \& Geff

- We have the choice of two free functions $f_{0}(\phi(t)), f_{1}(\phi(t))$
- Consider fixing the functions in terms of cosmological observables: H \& Geff

$$
\begin{gathered}
\delta_{b}{ }^{\prime \prime}+\frac{(H a)^{\prime}}{H a} \delta_{b}{ }^{\prime}-\frac{4 \pi G_{N}}{H^{2}}\left(\rho_{c} \delta_{c}+\rho_{b} \delta_{b}\right)=0, \\
\delta_{c}{ }^{\prime \prime}+\frac{\left(H a f_{1}, f_{0}\right)^{\prime}}{H a f_{1} l f_{0}} \delta_{c}{ }_{c}{ }^{\prime}-\frac{4 \pi G_{\text {eff }}}{H^{2}}\left(\rho_{c} \delta_{c}+\rho_{b} \delta_{b}\right)=0, \\
\frac{G_{e f f}}{G_{N}}=\frac{f_{0}}{f_{1}^{2}}
\end{gathered}
$$

VCCDM prospectives

- Baryon-baryon gravitational interactions unchanged
- Breaking of equivalence principle for DM
- Similar to phenomenology of DE-DM interactions
- But without extra dof
- Possible studies linear \& non-linear (N -body simulations)

Addressing H_{0} \& S_{8} (2): (ext)MTMG

[ADF, S. Mukohyama, 2016], [ADF, S. Mukohyama, M. Pookkillath, 2022]

- Maybe massive graviton responsible for the tensions?
- 2 physical dof only = massive gravitational waves
- FLRW is unstable for dRGT: no stable FLRW cosmology
de Rham, Gabadadze, Tolley 2010 ADF, Gumrukcuoglu, Mukohyama, 2012
- no BD ghost, no Higuchi ghost, no nonlinear ghost, if:
- 1. Fix local Lorentz to realize ADM vielbein in dRGT
- 2. Switch to Hamiltonian
- 3. Add 2 additional constraints

Cosmology of MTMG (self acc branch)

- Background constraint $\left(c_{3}+2 c_{2} X+c_{1} X^{2}\right)(\dot{X}+N H X-M H)=0, \quad X=\widetilde{a} / a$

$$
\begin{gathered}
X=\frac{-c_{2} \pm \sqrt{c_{2}^{2}-c_{1} c_{3}}}{c_{1}}, \\
3 M_{P}^{2} H^{2}=\frac{m^{2} M_{P}^{2}}{2}\left(c_{4}+3 c_{3} X+3 c_{2} X^{2}+c_{1} X^{3}\right)+\rho
\end{gathered}
$$

- $\Lambda_{\text {eff }}$ from graviton mass term (even when $C_{4}=0$)
- Scalar/vector equal to Λ CDM
- Time-dependent mass for the gravity waves

Cosmology of MTMG (normal Branch)

- Background constraint $\left(c_{3}+2 c_{2} X+c_{1} X^{2}\right)(\dot{X}+N H X-M H)=0, \quad X=\widetilde{a} / a$

$$
\begin{gathered}
H=X H_{f}, \quad H_{f}=M^{-1} \dot{\tilde{a}} / \widetilde{a}, \\
3 M_{P}^{2} H^{2}=\frac{m^{2} M_{P}^{2}}{2}\left(c_{4}+3 c_{3} X+3 c_{2} X^{2}+c_{1} X^{3}\right)+\rho
\end{gathered}
$$

- Dark component without extra dof
- Scalar part recovers $G R$ in $U V(L \ll 1 / m)$ but not $G R$ when $L \gg 1 / m$
- Non-zero mass for the gravity waves

ISW-galaxy correlation

[N. Bolis, ADF, S. Mukohyama, '18]

- Consider Bardeen potential Ψ, Φ
- Define ISW field $\psi_{\text {ISW }}=\Psi+\Phi$
- Calculate for both branches the triple integral
$C_{l}^{G I}=\frac{2}{\pi D_{0}^{2}} \int_{k_{m}}^{k_{n}} d k k^{2} P(k) \int_{N_{0}}^{N_{1}} d N_{1} j_{l}\left(k \chi_{1}\right) \psi_{I S W} \int_{N_{0}}^{N_{1}} d N_{2} e^{-N_{2}} \phi\left(N_{2}\right) b_{s} D\left(N_{2}\right) j_{l}\left(k \chi_{2}\right)$
- Perform integral for small I without taking subhorizon limit approx.
- Compare with data (SDSS, 2dmass)

Bounds from ISW-galaxy cross correlations

- Existence of Schwarzschild BH in self acc branch

ADF, Larrouturou, Mukohyama, Oliosi 2019

Constraints from multiple data sets

[ADF, Pookkillath, Mukohyama 2021]

- Geff takes the form

$$
\bar{G}_{\text {eff }}=\frac{2}{3} G_{N}\left[\frac{3}{2-\theta Y}-\frac{9 \theta Y \Omega_{m}}{2(\theta Y-2)^{2}}\right]
$$

- Here $\theta=\mu_{0}^{2} / H_{0}^{2}, Y=H_{0}^{2} / H^{2}$
- Strong bounds on graviton mass
- Negative values allowed(!?)
- Geff might blow up(!?)

	Planck	Planck+BAO+Panth	All joint analysis
$10^{2} \omega_{b}$	$2.242_{-0.030}^{+0.031}$	$2.242_{-0.027}^{+0.027}$	$2.247_{-0.027}^{+0.027}$
$\omega_{\text {cdm }}$	$0.1197_{-0.0028}^{+0.0028}$	$0.1195_{-0.0020}^{+0.0020}$	$0.1189_{-0.0019}^{+0.0019}$
$100 \theta_{s}$	$1.04194_{-0.000558}^{+0.00059}$	$1.04194_{-0.000556}^{+0.00056}$	$1.04198_{-0.00056}^{+0.0057}$
$\ln 10^{10} A_{s}$	$3.044_{-0.032}^{+0.032}$	$3.045_{-0.032}^{+0.033}$	$3.037_{-0.031}^{+0.031}$
n_{s}	$0.9671_{-0.0088}^{+0.0090}$	$0.9674_{-0.0076}^{+0.0077}$	$0.9683_{-0.0075}^{+0.0074}$
$\tau_{\text {reio }}$	$0.055_{-0.015}^{+0.016}$	$0.055_{-0.015}^{+0.016}$	$0.052_{-0.015}^{+0.015}$
A_{1}	$0.57_{-0.57}^{1+1.1}$	$0.63_{-0.63}^{0+.73}$	$0.71_{-0.71}^{+0.43}$
A_{2}	$6.2{ }_{-7.0}^{+8.4}$	$6.4{ }_{-6.4}^{+8.5}$	$3.9-3.9$
\bar{c}_{1}	$0.0{ }_{-9.2}^{+9.2}$	$0.2{ }_{-9.2}^{+9.0}$	$-0.1{ }_{-8.5}^{+8.3}$
\bar{c}_{2}	$0.1+8.4$	$0.0{ }_{-8.3}^{+8.5}$	$-0.4{ }_{-7.1}^{+6.8}$
\bar{c}_{3}	$1.22_{-8.1}^{+8.1}$	$1.1{ }_{-8.0}^{88.2}$	$0.9{ }_{-6.5}^{+6.6}$
Ω_{m}	$0.318_{-0.068}^{+0.17}$	$0.306_{-0.012}^{+0.012}$	$0.302_{-0.011}^{+0.011}$
H_{0}	67_{-10}^{+8}	$68.11_{-0.92}^{+0.92}$	$68.37_{-0.93}^{+0.87}$
σ_{8}	$0.816_{-0.15}^{+0.089}$	$0.822_{-0.018}^{+0.021}$	$0.816_{-0.017}^{+0.016}$
S_{8}	$0.832_{-0.040}^{+0.040}$	$0.830_{-0.027}^{+0.028}$	$0.819_{-0.024}^{+0.023}$
Δ	-0.4-4.2	$-0.4{ }_{-4.1}^{+2.5}$	$-0.1{ }_{-1.5}^{+1.3}$
θ_{0}	$0.18{ }_{-0.40}^{+0.64}$	$0.16_{-0.28}^{+0.27}$	$0.12_{-0.22}^{+0.21}$
\bar{c}_{4}	3_{-10}^{+10}	3_{-11}^{+11}	$3.2{ }_{-6.9}^{+5.9}$

Table II: Constraints at 95% CL on the primary and derived parameters of dynamical MTMG.

Extended version of MTMG
 [ADF, S. Mukohyama, M. Pookkillath, 2022]

- Can we extend MTMG so that $\mu>0, G_{e f f} / G_{N}>0$?
- At any redshifts?
- But still allowing $H \neq H_{\Lambda C D M}, 0<\frac{G_{\text {eff }}}{G_{N}}<1$
- If implemented bullet-proof massive graviton theory
- Interesting phenomenology

Extended MTMG

[ADF, Pookkillath, Mukohyama 2022]

- Introduce the theory with $\mu>0,0<G_{\text {eff }} / G_{N} \leq 1$ for any dynamics
$\mathcal{L}=\frac{M_{\mathrm{P}}^{2}}{2} \sqrt{\gamma} N\left[\gamma^{i j} \gamma^{k d}\left(K_{i k} K_{j d}-K_{i j} K_{k d}\right)+R\right]$
$-\frac{1}{2} m^{2} M_{\mathrm{P}}^{2} \sqrt{\gamma} N F_{1}\left([\mathfrak{K}],\left[\mathfrak{K}^{2}\right],\left[\mathfrak{K}^{3}\right]\right)-\frac{1}{2} m^{2} M_{\mathrm{P}}^{2} \sqrt{\tilde{\gamma}} M F_{2}\left([\mathcal{K}],\left[\mathcal{K}^{2}\right],\left[\mathcal{K}^{3}\right]\right)$
$+\frac{m^{4} M_{\mathrm{P}}^{2} \lambda^{2} M^{2}}{64 N} \sqrt{\gamma} \gamma_{i k} \gamma_{j d}\left(2 \Theta^{i j} \Theta^{k d}-\Theta^{i k} \Theta^{j d}\right)$
$+\lambda \sqrt{\gamma}\left[\mathcal{C}_{\zeta}-\frac{1}{4} m^{2} M_{\mathrm{P}}^{2} M K_{i j} \Theta^{i j}\right]+\sqrt{\gamma}\left(D_{j} \lambda^{i}\right) \mathcal{C}^{j}{ }_{i}$.
with

$$
F_{1}=c_{4}+\left(2\left[\{\mathbb{R}]\left[\mathcal{R}^{2}\right]-\frac{10}{9}[\mathscr{R}]^{3}\right) \xi^{2},\right.
$$

- Phenomenology?

$$
\left.\left.F_{2}=\left(2[\mathcal{K}]\left[\mathcal{K}^{2}\right]-\frac{10}{9}[\mathcal{K}]^{3}\right) \zeta_{1}^{2}+\left(2[\mathcal{K}] \mathcal{K}^{3}\right]-\frac{4}{9}[\mathcal{K}]^{4}\right) \zeta_{2}^{2}+\left(2\left[\mathcal{K}^{2}\right] \mathcal{K}^{3}\right]-\frac{2\left[\mathcal{K} \mathcal{K}^{5}\right.}{15}\right) \zeta_{3}^{2}+\left(\left[\mathcal{K}^{3}\right]^{2}-\frac{[\mathcal{K}]^{6}}{45}\right)
$$

- Can a graviton mass fix the tensions in cosmology?

Conclusions

- Implement minimal theories to attack late time puzzles
- Minimal theories allow for wild modifications of observables H \& Geff
- VCDM [as to solve H0-tension]
- VCCDM [as to solve H 0 and S 8 tensions]
- ExtMTMG [as to attack H0 \& S8 tensions via a massive graviton]
- Each having different (interesting) phenomenology
- Let us wait for more data to come
- Detailed understanding of these theories is necessary

